Learning Directional Feature Maps for Cardiac MRI Segmentation
- URL: http://arxiv.org/abs/2007.11349v1
- Date: Wed, 22 Jul 2020 11:31:04 GMT
- Title: Learning Directional Feature Maps for Cardiac MRI Segmentation
- Authors: Feng Cheng, Cheng Chen, Yukang Wang, Heshui Shi, Yukun Cao, Dandan Tu,
Changzheng Zhang, Yongchao Xu
- Abstract summary: We propose a novel method to exploit the directional feature maps, which can simultaneously strengthen the differences between classes and the similarities within classes.
Specifically, we perform cardiac segmentation and learn a direction field pointing away from the nearest cardiac tissue boundary to each pixel.
Based on the learned direction field, we then propose a feature rectification and fusion (FRF) module to improve the original segmentation features.
- Score: 13.389141642517762
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiac MRI segmentation plays a crucial role in clinical diagnosis for
evaluating personalized cardiac performance parameters. Due to the indistinct
boundaries and heterogeneous intensity distributions in the cardiac MRI, most
existing methods still suffer from two aspects of challenges: inter-class
indistinction and intra-class inconsistency. To tackle these two problems, we
propose a novel method to exploit the directional feature maps, which can
simultaneously strengthen the differences between classes and the similarities
within classes. Specifically, we perform cardiac segmentation and learn a
direction field pointing away from the nearest cardiac tissue boundary to each
pixel via a direction field (DF) module. Based on the learned direction field,
we then propose a feature rectification and fusion (FRF) module to improve the
original segmentation features, and obtain the final segmentation. The proposed
modules are simple yet effective and can be flexibly added to any existing
segmentation network without excessively increasing time and space complexity.
We evaluate the proposed method on the 2017 MICCAI Automated Cardiac Diagnosis
Challenge (ACDC) dataset and a large-scale self-collected dataset, showing good
segmentation performance and robust generalization ability of the proposed
method.
Related papers
- Preserving Cardiac Integrity: A Topology-Infused Approach to Whole Heart Segmentation [6.495726693226574]
Whole heart segmentation (WHS) supports cardiovascular disease diagnosis, disease monitoring, treatment planning, and prognosis.
This paper introduces a new topology-preserving module that is integrated into deep neural networks.
The implementation achieves anatomically plausible segmentation by using learned topology-preserving fields, which are based entirely on 3D convolution and are therefore very effective for 3D voxel data.
arXiv Detail & Related papers (2024-10-14T14:32:05Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Ensemble Learning of Myocardial Displacements for Myocardial Infarction
Detection in Echocardiography [15.153823114115307]
Early detection and localization of myocardial infarction can reduce the severity of cardiac damage.
Deep learning techniques have shown promise for detecting MI in echocardiographic images.
Our study introduces a robust method that combines features from multiple segmentation models to improve MI classification performance.
arXiv Detail & Related papers (2023-03-12T20:16:14Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - AWSnet: An Auto-weighted Supervision Attention Network for Myocardial
Scar and Edema Segmentation in Multi-sequence Cardiac Magnetic Resonance
Images [23.212429566838203]
We develop a novel auto-weighted supervision framework to tackle the scar and edema segmentation from multi-sequence CMR data.
We also design a coarse-to-fine framework to boost the small myocardial pathology region segmentation with shape prior knowledge.
Our method is promising in advancing the myocardial pathology assessment on multi-sequence CMR data.
arXiv Detail & Related papers (2022-01-14T08:59:54Z) - Improved AI-based segmentation of apical and basal slices from clinical
cine CMR [1.7647111545685723]
We aim to investigate the performance of AI algorithms in segmenting basal and apical slices.
We trained all our models on a large dataset of clinical CMR studies obtained from two NHS hospitals.
We show that the classification and segmentation approach was best at reducing the performance gap across all datasets.
arXiv Detail & Related papers (2021-09-20T10:48:50Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Multi-class probabilistic atlas-based whole heart segmentation method in
cardiac CT and MRI [4.144197343838299]
This article proposes a framework for multi-class whole heart segmentation employing non-rigid registration-based probabilistic atlas.
We also propose a non-rigid registration pipeline utilizing a multi-resolution strategy for obtaining the highest attainable mutual information.
The proposed approach exhibits an encouraging achievement, yielding a mean volume overlapping error of 14.5 % for CT scans.
arXiv Detail & Related papers (2021-02-03T01:02:09Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Towards Cross-modality Medical Image Segmentation with Online Mutual
Knowledge Distillation [71.89867233426597]
In this paper, we aim to exploit the prior knowledge learned from one modality to improve the segmentation performance on another modality.
We propose a novel Mutual Knowledge Distillation scheme to thoroughly exploit the modality-shared knowledge.
Experimental results on the public multi-class cardiac segmentation data, i.e., MMWHS 2017, show that our method achieves large improvements on CT segmentation.
arXiv Detail & Related papers (2020-10-04T10:25:13Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.