Benchmarking Attention Mechanisms and Consistency Regularization Semi-Supervised Learning for Post-Flood Building Damage Assessment in Satellite Images
- URL: http://arxiv.org/abs/2412.03015v2
- Date: Fri, 13 Dec 2024 06:46:21 GMT
- Title: Benchmarking Attention Mechanisms and Consistency Regularization Semi-Supervised Learning for Post-Flood Building Damage Assessment in Satellite Images
- Authors: Jiaxi Yu, Tomohiro Fukuda, Nobuyoshi Yabuki,
- Abstract summary: Post-flood building damage assessment is critical for rapid response and post-disaster reconstruction planning.<n>Current research fails to consider the distinct requirements of disaster assessment (DA) from change detection (CD) in neural network design.<n>This paper focuses on two key differences: 1) building change features in DA satellite images are more subtle than in CD; 2) DA datasets face more severe data scarcity and label imbalance.
- Score: 0.4915744683251151
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Post-flood building damage assessment is critical for rapid response and post-disaster reconstruction planning. Current research fails to consider the distinct requirements of disaster assessment (DA) from change detection (CD) in neural network design. This paper focuses on two key differences: 1) building change features in DA satellite images are more subtle than in CD; 2) DA datasets face more severe data scarcity and label imbalance. To address these issues, in terms of model architecture, the research explores the benchmark performance of attention mechanisms in post-flood DA tasks and introduces Simple Prior Attention UNet (SPAUNet) to enhance the model's ability to recognize subtle changes, in terms of semi-supervised learning (SSL) strategies, the paper constructs four different combinations of image-level label category reference distributions for consistent training. Experimental results on flood events of xBD dataset show that SPAUNet performs exceptionally well in supervised learning experiments, achieving a recall of 79.10% and an F1 score of 71.32% for damaged classification, outperforming CD methods. The results indicate the necessity of DA task-oriented model design. SSL experiments demonstrate the positive impact of image-level consistency regularization on the model. Using pseudo-labels to form the reference distribution for consistency training yields the best results, proving the potential of using the category distribution of a large amount of unlabeled data for SSL. This paper clarifies the differences between DA and CD tasks. It preliminarily explores model design strategies utilizing prior attention mechanisms and image-level consistency regularization, establishing new post-flood DA task benchmark methods.
Related papers
- Learning Causal Graphs at Scale: A Foundation Model Approach [28.966180222166766]
We propose Attention-DAG (ADAG), a novel attention-mechanism-based architecture for learning multiple linear Structural Equation Models (SEMs)<n>ADAG learns the mapping from observed data to both graph structure and parameters via a nonlinear attention-based kernel.<n>We evaluate our proposed approach on benchmark synthetic datasets and find that ADAG achieves substantial improvements in both DAG learning accuracy and zero-shot inference efficiency.
arXiv Detail & Related papers (2025-06-23T04:41:02Z) - Training Strategies for Isolated Sign Language Recognition [72.27323884094953]
This paper introduces a comprehensive model training pipeline for Isolated Sign Language Recognition.
The constructed pipeline incorporates carefully selected image and video augmentations to tackle the challenges of low data quality and varying sign speeds.
We achieve a state-of-the-art result on the WLASL and Slovo benchmarks with 1.63% and 14.12% improvements compared to the previous best solution.
arXiv Detail & Related papers (2024-12-16T08:37:58Z) - PairCFR: Enhancing Model Training on Paired Counterfactually Augmented Data through Contrastive Learning [49.60634126342945]
Counterfactually Augmented Data (CAD) involves creating new data samples by applying minimal yet sufficient modifications to flip the label of existing data samples to other classes.
Recent research reveals that training with CAD may lead models to overly focus on modified features while ignoring other important contextual information.
We employ contrastive learning to promote global feature alignment in addition to learning counterfactual clues.
arXiv Detail & Related papers (2024-06-09T07:29:55Z) - Symmetrical Bidirectional Knowledge Alignment for Zero-Shot Sketch-Based
Image Retrieval [69.46139774646308]
This paper studies the problem of zero-shot sketch-based image retrieval (ZS-SBIR)
It aims to use sketches from unseen categories as queries to match the images of the same category.
We propose a novel Symmetrical Bidirectional Knowledge Alignment for zero-shot sketch-based image retrieval (SBKA)
arXiv Detail & Related papers (2023-12-16T04:50:34Z) - Towards Causal Foundation Model: on Duality between Causal Inference and Attention [18.046388712804042]
We take a first step towards building causally-aware foundation models for treatment effect estimations.
We propose a novel, theoretically justified method called Causal Inference with Attention (CInA)
arXiv Detail & Related papers (2023-10-01T22:28:34Z) - A New Knowledge Distillation Network for Incremental Few-Shot Surface
Defect Detection [20.712532953953808]
This paper proposes a new knowledge distillation network, called Dual Knowledge Align Network (DKAN)
The proposed DKAN method follows a pretraining-finetuning transfer learning paradigm and a knowledge distillation framework is designed for fine-tuning.
Experiments have been conducted on the incremental Few-shot NEU-DET dataset and results show that DKAN outperforms other methods on various few-shot scenes.
arXiv Detail & Related papers (2022-09-01T15:08:44Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
We propose a two-stage Activation-to-Saliency (A2S) framework that effectively generates high-quality saliency cues.
No human annotations are involved in our framework during the whole training process.
Our framework reports significant performance compared with existing USOD methods.
arXiv Detail & Related papers (2021-12-07T11:54:06Z) - Ortho-Shot: Low Displacement Rank Regularization with Data Augmentation
for Few-Shot Learning [23.465747123791772]
In few-shot classification, the primary goal is to learn representations that generalize well for novel classes.
We propose an efficient low displacement rank (LDR) regularization strategy termed Ortho-Shot.
arXiv Detail & Related papers (2021-10-18T14:58:36Z) - Semantics-Guided Contrastive Network for Zero-Shot Object detection [67.61512036994458]
Zero-shot object detection (ZSD) is a new challenge in computer vision.
We develop ContrastZSD, a framework that brings contrastive learning mechanism into the realm of zero-shot detection.
Our method outperforms the previous state-of-the-art on both ZSD and generalized ZSD tasks.
arXiv Detail & Related papers (2021-09-04T03:32:15Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
We teach the model to capture broader variations of the feature distributions with a novel noise-enhanced supervised autoencoder (NSAE)
NSAE trains the model by jointly reconstructing inputs and predicting the labels of inputs as well as their reconstructed pairs.
We also take advantage of NSAE structure and propose a two-step fine-tuning procedure that achieves better adaption and improves classification performance in the target domain.
arXiv Detail & Related papers (2021-08-11T04:45:56Z) - Exploration and Exploitation: Two Ways to Improve Chinese Spelling
Correction Models [51.744357472072416]
We propose a method, which continually identifies the weak spots of a model to generate more valuable training instances.
Experimental results show that such an adversarial training method combined with the pretraining strategy can improve both the generalization and robustness of multiple CSC models.
arXiv Detail & Related papers (2021-05-31T09:17:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.