Hamiltonian-based neural networks for systems under nonholonomic constraints
- URL: http://arxiv.org/abs/2412.03018v1
- Date: Wed, 04 Dec 2024 04:08:51 GMT
- Title: Hamiltonian-based neural networks for systems under nonholonomic constraints
- Authors: Ignacio Puiggros T., A. Srikantha Phani,
- Abstract summary: We develop a modified Hamiltonian neural network architecture capable of modeling Hamiltonian systems under nonholonomic constraints.
A three-network parallel architecture is proposed to simultaneously learn the Hamiltonian of the system, the constraints, and their associated multipliers.
- Score: 0.0
- License:
- Abstract: There has been increasing interest in methodologies that incorporate physics priors into neural network architectures to enhance their modeling capabilities. A family of these methodologies that has gained traction are Hamiltonian neural networks (HNN) and their variations. These architectures explicitly encode Hamiltonian mechanics both in their structure and loss function. Although Hamiltonian systems under nonholonomic constraints are in general not Hamiltonian, it is possible to formulate them in pseudo-Hamiltonian form, equipped with a Lie bracket which is almost Poisson. This opens the possibility of using some principles of HNNs in systems under nonholonomic constraints. The goal of the present work is to develop a modified Hamiltonian neural network architecture capable of modeling Hamiltonian systems under holonomic and nonholonomic constraints. A three-network parallel architecture is proposed to simultaneously learn the Hamiltonian of the system, the constraints, and their associated multipliers. A rolling disk and a ball on a spinning table are considered as canonical examples to assess the performance of the proposed Hamiltonian architecture. The experiments are then repeated with a noisy training set to study modeling performance under more realistic conditions.
Related papers
- Learning Generalized Hamiltonians using fully Symplectic Mappings [0.32985979395737786]
Hamiltonian systems have the important property of being conservative, that is, energy is conserved throughout the evolution.
In particular Hamiltonian Neural Networks have emerged as a mechanism to incorporate structural inductive bias into the NN model.
We show that symplectic schemes are robust to noise and provide a good approximation of the system Hamiltonian when the state variables are sampled from a noisy observation.
arXiv Detail & Related papers (2024-09-17T12:45:49Z) - Infusing Self-Consistency into Density Functional Theory Hamiltonian Prediction via Deep Equilibrium Models [30.746062388701187]
We introduce a unified neural network architecture, the Deep Equilibrium Density Functional Theory Hamiltonian (DEQH) model.
DEQH model inherently captures the self-consistency nature of Hamiltonian.
We propose a versatile framework that combines DEQ with off-the-shelf machine learning models for predicting Hamiltonians.
arXiv Detail & Related papers (2024-06-06T07:05:58Z) - Applications of Machine Learning to Modelling and Analysing Dynamical
Systems [0.0]
We propose an architecture which combines existing Hamiltonian Neural Network structures into Adaptable Symplectic Recurrent Neural Networks.
This architecture is found to significantly outperform previously proposed neural networks when predicting Hamiltonian dynamics.
We show that this method works efficiently for single parameter potentials and provides accurate predictions even over long periods of time.
arXiv Detail & Related papers (2023-07-22T19:04:17Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - Port-Hamiltonian Neural Networks with State Dependent Ports [58.720142291102135]
We stress-test the method on both simple mass-spring systems and more complex and realistic systems with several internal and external forces.
Port-Hamiltonian neural networks can be extended to larger dimensions with state-dependent ports.
We propose a symmetric high-order integrator for improved training on sparse and noisy data.
arXiv Detail & Related papers (2022-06-06T14:57:25Z) - Learning Trajectories of Hamiltonian Systems with Neural Networks [81.38804205212425]
We propose to enhance Hamiltonian neural networks with an estimation of a continuous-time trajectory of the modeled system.
We demonstrate that the proposed integration scheme works well for HNNs, especially with low sampling rates, noisy and irregular observations.
arXiv Detail & Related papers (2022-04-11T13:25:45Z) - Learning Neural Hamiltonian Dynamics: A Methodological Overview [109.40968389896639]
Hamiltonian dynamics endows neural networks with accurate long-term prediction, interpretability, and data-efficient learning.
We systematically survey recently proposed Hamiltonian neural network models, with a special emphasis on methodologies.
arXiv Detail & Related papers (2022-02-28T22:54:39Z) - SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred
from Vision [73.26414295633846]
A recently proposed class of models attempts to learn latent dynamics from high-dimensional observations.
Existing methods rely on image reconstruction quality, which does not always reflect the quality of the learnt latent dynamics.
We develop a set of new measures, including a binary indicator of whether the underlying Hamiltonian dynamics have been faithfully captured.
arXiv Detail & Related papers (2021-11-10T23:26:58Z) - Symplectic Learning for Hamiltonian Neural Networks [0.0]
Hamiltonian Neural Networks (HNNs) took a first step towards a unified "gray box" approach.
We exploit the symplectic structure of Hamiltonian systems with a different loss function.
We mathematically guarantee the existence of an exact Hamiltonian function which the HNN can learn.
arXiv Detail & Related papers (2021-06-22T13:33:12Z) - Nonseparable Symplectic Neural Networks [23.77058934710737]
We propose a novel neural network architecture, Nonseparable Symplectic Neural Networks (NSSNNs)
NSSNNs uncover and embed the symplectic structure of a nonseparable Hamiltonian system from limited observation data.
We show the unique computational merits of our approach to yield long-term, accurate, and robust predictions for large-scale Hamiltonian systems.
arXiv Detail & Related papers (2020-10-23T19:50:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.