Revisiting Energy-Based Model for Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2412.03058v1
- Date: Wed, 04 Dec 2024 06:25:26 GMT
- Title: Revisiting Energy-Based Model for Out-of-Distribution Detection
- Authors: Yifan Wu, Xichen Ye, Songmin Dai, Dengye Pan, Xiaoqiang Li, Weizhong Zhang, Yifan Chen,
- Abstract summary: Outlier Exposure by Simple Transformations (OEST) is a framework that enhances OOD detection by leveraging "peripheral-distribution" (PD) data.
PD data are samples generated through simple data transformations, thus providing an efficient alternative to manually curated outliers.
OEST* achieves better or similar accuracy compared with state-of-the-art methods.
- Score: 23.39953997547791
- License:
- Abstract: Out-of-distribution (OOD) detection is an essential approach to robustifying deep learning models, enabling them to identify inputs that fall outside of their trained distribution. Existing OOD detection methods usually depend on crafted data, such as specific outlier datasets or elaborate data augmentations. While this is reasonable, the frequent mismatch between crafted data and OOD data limits model robustness and generalizability. In response to this issue, we introduce Outlier Exposure by Simple Transformations (OEST), a framework that enhances OOD detection by leveraging "peripheral-distribution" (PD) data. Specifically, PD data are samples generated through simple data transformations, thus providing an efficient alternative to manually curated outliers. We adopt energy-based models (EBMs) to study PD data. We recognize the "energy barrier" in OOD detection, which characterizes the energy difference between in-distribution (ID) and OOD samples and eases detection. PD data are introduced to establish the energy barrier during training. Furthermore, this energy barrier concept motivates a theoretically grounded energy-barrier loss to replace the classical energy-bounded loss, leading to an improved paradigm, OEST*, which achieves a more effective and theoretically sound separation between ID and OOD samples. We perform empirical validation of our proposal, and extensive experiments across various benchmarks demonstrate that OEST* achieves better or similar accuracy compared with state-of-the-art methods.
Related papers
- Out-of-Distribution Detection using Synthetic Data Generation [21.612592503592143]
In- and out-of-distribution (OOD) inputs are crucial for reliable deployment of classification systems.
We present a method that harnesses the generative capabilities of Large Language Models (LLMs) to create high-quality synthetic OOD proxies.
arXiv Detail & Related papers (2025-02-05T16:22:09Z) - Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
Out-of-distribution (OOD) object detection is a challenging task due to the absence of open-set OOD data.
Inspired by recent advancements in text-to-image generative models, we study the potential of generative models trained on large-scale open-set data to synthesize OOD samples.
We introduce SyncOOD, a simple data curation method that capitalizes on the capabilities of large foundation models.
arXiv Detail & Related papers (2024-09-08T17:28:22Z) - OAL: Enhancing OOD Detection Using Latent Diffusion [5.357756138014614]
Outlier Aware Learning (OAL) framework synthesizes OOD training data directly in the latent space.
We introduce a mutual information-based contrastive learning approach that amplifies the distinction between In-Distribution (ID) and collected OOD features.
arXiv Detail & Related papers (2024-06-24T11:01:43Z) - Multi-Label Out-of-Distribution Detection with Spectral Normalized Joint Energy [14.149428145967939]
We introduce Spectral Normalized Joint Energy (SNoJoE), a method that consolidates label-specific information across multiple labels.
Our findings indicate that the application of spectral normalization to joint energy scores notably amplifies the model's capability for OOD detection.
arXiv Detail & Related papers (2024-05-08T02:05:38Z) - Deep Metric Learning-Based Out-of-Distribution Detection with Synthetic Outlier Exposure [0.0]
We propose a label-mixup approach to generate synthetic OOD data using Denoising Diffusion Probabilistic Models (DDPMs)
In the experiments, we found that metric learning-based loss functions perform better than the softmax.
Our approach outperforms strong baselines in conventional OOD detection metrics.
arXiv Detail & Related papers (2024-05-01T16:58:22Z) - Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models [71.39421638547164]
We propose to detect OOD molecules by adopting an auxiliary diffusion model-based framework, which compares similarities between input molecules and reconstructed graphs.
Due to the generative bias towards reconstructing ID training samples, the similarity scores of OOD molecules will be much lower to facilitate detection.
Our research pioneers an approach of Prototypical Graph Reconstruction for Molecular OOD Detection, dubbed as PGR-MOOD and hinges on three innovations.
arXiv Detail & Related papers (2024-04-24T03:25:53Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
We propose a Non-Parametric Test Time textbfAdaptation framework for textbfDistribution textbfDetection (abbr)
abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions.
We demonstrate the effectiveness of abbr through comprehensive experiments on multiple OOD detection benchmarks.
arXiv Detail & Related papers (2023-11-28T02:00:47Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
Out-of-distribution (OOD) detection discerns OOD data where the predictor cannot make valid predictions as in-distribution (ID) data.
It is typically hard to collect real out-of-distribution (OOD) data for training a predictor capable of discerning OOD patterns.
We propose a data generation-based learning method named Auxiliary Task-based OOD Learning (ATOL) that can relieve the mistaken OOD generation.
arXiv Detail & Related papers (2023-11-06T16:26:52Z) - Out-of-distribution Detection with Implicit Outlier Transformation [72.73711947366377]
Outlier exposure (OE) is powerful in out-of-distribution (OOD) detection.
We propose a novel OE-based approach that makes the model perform well for unseen OOD situations.
arXiv Detail & Related papers (2023-03-09T04:36:38Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.