論文の概要: Coordinated Multi-Armed Bandits for Improved Spatial Reuse in Wi-Fi
- arxiv url: http://arxiv.org/abs/2412.03076v2
- Date: Wed, 05 Mar 2025 10:19:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 19:04:42.265847
- Title: Coordinated Multi-Armed Bandits for Improved Spatial Reuse in Wi-Fi
- Title(参考訳): Wi-Fiにおける空間再利用のための協調型マルチアーマッドバンド
- Authors: Francesc Wilhelmi, Boris Bellalta, Szymon Szott, Katarzyna Kosek-Szott, Sergio Barrachina-Muñoz,
- Abstract要約: 空間再利用(SR)の最適化を推進するためのオンライン学習に基づく協調型ソリューションについて検討する。
特に、複数の意思決定エージェントが既存のネットワークからSRパラメータを同時に設定するマルチエージェントマルチアーマッドバンド(MA-MAB)の設定に着目する。
協調MABによって実現されたAIネイティブSRは、現在のWi-Fi操作よりもネットワーク性能を向上させることができることを示す。
- 参考スコア(独自算出の注目度): 2.143751226500554
- License:
- Abstract: Multi-Access Point Coordination (MAPC) and Artificial Intelligence and Machine Learning (AI/ML) are expected to be key features in future Wi-Fi, such as the forthcoming IEEE 802.11bn (Wi-Fi~8) and beyond. In this paper, we explore a coordinated solution based on online learning to drive the optimization of Spatial Reuse (SR), a method that allows multiple devices to perform simultaneous transmissions by controlling interference through Packet Detect (PD) adjustment and transmit power control. In particular, we focus on a Multi-Agent Multi-Armed Bandit (MA-MAB) setting, where multiple decision-making agents concurrently configure SR parameters from coexisting networks by leveraging the MAPC framework, and study various algorithms and reward-sharing mechanisms. We evaluate different MA-MAB implementations using Komondor, a well-adopted Wi-Fi simulator, and demonstrate that AI-native SR enabled by coordinated MABs can improve the network performance over current Wi-Fi operation: mean throughput increases by 15%, fairness is improved by increasing the minimum throughput across the network by 210%, while the maximum access delay is kept below 3 ms.
- Abstract(参考訳): Multi-Access Point Coordination (MAPC)とArtificial Intelligence and Machine Learning (AI/ML)は将来のWi-Fiの主要な機能として期待されている。
本稿では,空間再利用(SR)の最適化を推進するためのオンライン学習に基づく協調型ソリューションについて検討する。これは,パケット検出(PD)調整による干渉制御と電力制御により,複数のデバイスが同時送信を行うことを可能にする手法である。
特に,MAPCフレームワークを活用することで,複数の意思決定エージェントが既存のネットワークからSRパラメータを並列に設定し,様々なアルゴリズムや報酬共有機構を学習するマルチエージェントマルチアーマッドバンド(MA-MAB)の設定に着目する。
我々は、Wi-FiシミュレーターであるKomondorを用いて異なるMA-MABの実装を評価し、協調MABによって実現されたAIネイティブSRが、現在のWi-Fi操作よりもネットワーク性能を向上させることを実証した。
関連論文リスト
- Communication- and Computation-Efficient Distributed Submodular Optimization in Robot Mesh Networks [2.8936428431504164]
ロボットメッシュネットワークにおける分散サブモジュール最適化のための通信効率と計算効率の両立手法を提案する。
我々の手法であるResource-Aware Distributed Greedy (RAG)は、新しい分散最適化パラダイムを導入する。
RAGの決定時間はネットワークサイズと線形にスケールするが、最先端の準モジュラ最適化アルゴリズムは3倍にスケールする。
論文 参考訳(メタデータ) (2024-07-15T01:25:39Z) - Multi-agent Reinforcement Learning for Energy Saving in Multi-Cell
Massive MIMO Systems [6.614630708703594]
マルチセルネットワークにおける基地局 (BS) の総エネルギー消費を最小化するマルチエージェント強化学習 (MARL) アルゴリズムを開発した。
トレーニングされたMAPPOエージェントは,基本方針よりも優れた性能を示すことを示す。
具体的には、オートスリープモード1のアルゴリズムと比較して、MAPPO隣のポリシーは低交通時間帯では消費電力を約8.7%削減し、高交通時間帯ではエネルギー効率を約19%向上させる。
論文 参考訳(メタデータ) (2024-02-05T17:15:00Z) - DeepMPR: Enhancing Opportunistic Routing in Wireless Networks through
Multi-Agent Deep Reinforcement Learning [0.5818726765408144]
機会的ルーティングは、無線ネットワークのブロードキャスト能力に依存する。
ブロードキャストのコストを削減するため、マルチキャストルーティングスキームはネットワークオーバーヘッドを減らすためにコネクテッド・ドミネーション・セット(CDS)またはマルチポイント・リレー・セット(MPR)を使用する。
一般的なMPR選択アルゴリズムは、ノード間の調整に依存し、大規模ネットワークには高い計算能力を必要とし、ネットワークの不確実性にチューニングすることが困難である。
本稿では,OLSR MPR選択アルゴリズムよりも優れた新しいMPRマルチキャストルーティング手法であるDeepMPRを設計するために,マルチエージェントディープ強化学習を用いる。
論文 参考訳(メタデータ) (2023-06-16T05:53:42Z) - Distributed Multi-Agent Deep Q-Learning for Fast Roaming in IEEE
802.11ax Wi-Fi Systems [8.057006406834466]
Wi-Fi 6 IEEE 802.11axは無線ローカルネットワーク(WLAN)の第6世代(6G)技術として承認された。
本稿では,Wi-Fi 6 システムにおける Smart Warehouse 用ステーションローミングにおける遅延を効果的に抑えるために,高速ローミング (MADAR) アルゴリズムのためのマルチエージェント深層Q-ラーニングを提案する。
論文 参考訳(メタデータ) (2023-03-25T04:39:59Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - State-Augmented Learnable Algorithms for Resource Management in Wireless
Networks [124.89036526192268]
本稿では,無線ネットワークにおける資源管理問題を解決するためのステート拡張アルゴリズムを提案する。
提案アルゴリズムは, RRM決定を可能, ほぼ最適に行うことができることを示す。
論文 参考訳(メタデータ) (2022-07-05T18:02:54Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
Reconfigurable Intelligent Surfaces(RIS)の新たな技術は、スマート無線環境の実現手段として準備されている。
RISは、無線媒体上の電磁信号の伝搬を動的に制御するための、高度にスケーラブルで低コストで、ハードウェア効率が高く、ほぼエネルギーニュートラルなソリューションを提供する。
このような再構成可能な無線環境におけるRISの密配置に関する大きな課題の1つは、複数の準曲面の効率的な構成である。
論文 参考訳(メタデータ) (2022-05-08T06:21:33Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
デバイス間の限られた通信資源、帯域幅とエネルギー、およびデータ不均一性は、連邦学習(FL)の主要なボトルネックである
まず、部分モデルアグリゲーション(PMA)を用いた新しいFLフレームワークを考案する。
提案されたPMA-FLは、2つの典型的な異種データセットにおいて2.72%と11.6%の精度を改善する。
論文 参考訳(メタデータ) (2022-04-20T19:09:52Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
インテリジェント・リフレクション・サーフェス(IRS)は将来の無線ネットワークに広く応用されることが想定されている。
本稿では,エネルギー収穫能力を備えた協調型IRSデバイスを用いたマルチユーザ通信システムについて検討する。
論文 参考訳(メタデータ) (2022-03-26T20:37:14Z) - Multi-Agent Reinforcement Learning in NOMA-aided UAV Networks for
Cellular Offloading [59.32570888309133]
複数の無人航空機(UAV)によるセルローディングのための新しい枠組みの提案
非直交多重アクセス(NOMA)技術は、無線ネットワークのスペクトル効率をさらに向上するために、各UAVに採用されている。
相互深いQ-network (MDQN) アルゴリズムは,UAVの最適3次元軌道と電力配分を共同で決定するために提案される。
論文 参考訳(メタデータ) (2020-10-18T20:22:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。