Sinkhorn Algorithm for Sequentially Composed Optimal Transports
- URL: http://arxiv.org/abs/2412.03120v4
- Date: Sun, 12 Jan 2025 08:12:17 GMT
- Title: Sinkhorn Algorithm for Sequentially Composed Optimal Transports
- Authors: Kazuki Watanabe, Noboru Isobe,
- Abstract summary: Sinkhorn algorithm is the de-facto standard approximation algorithm for optimal transport.
We present an efficient approximation algorithm, namely Sinkhorn algorithm for sequentially composed optimal transports.
- Score: 0.0
- License:
- Abstract: Sinkhorn algorithm is the de-facto standard approximation algorithm for optimal transport, which has been applied to a variety of applications, including image processing and natural language processing. In theory, the proof of its convergence follows from the convergence of the Sinkhorn--Knopp algorithm for the matrix scaling problem, and Altschuler et al. show that its worst-case time complexity is in near-linear time. Very recently, sequentially composed optimal transports were proposed by Watanabe and Isobe as a hierarchical extension of optimal transports. In this paper, we present an efficient approximation algorithm, namely Sinkhorn algorithm for sequentially composed optimal transports, for its entropic regularization. Furthermore, we present a theoretical analysis of the Sinkhorn algorithm, namely (i) its exponential convergence to the optimal solution with respect to the Hilbert pseudometric, and (ii) a worst-case complexity analysis for the case of one sequential composition.
Related papers
- A Sinkhorn-type Algorithm for Constrained Optimal Transport [14.935188572016635]
This work focuses on a general class of OT problems under a combination of equality and inequality constraints.
We derive the corresponding entropy regularization formulation and introduce a Sinkhorn-type algorithm for such constrained OT problems supported by theoretical guarantees.
Overall, this work systematically combines recent theoretical and numerical advances in entropic optimal transport with the constrained case, allowing practitioners to derive approximate transport plans in complex scenarios.
arXiv Detail & Related papers (2024-03-08T05:01:43Z) - Accelerating Sinkhorn Algorithm with Sparse Newton Iterations [14.094908995798757]
We present Sinkhorn-Newton-Sparse (SNS), an extension to the Sinkhorn algorithm.
SNS converges orders magnitude faster across a wide range of practical cases.
arXiv Detail & Related papers (2024-01-20T21:23:09Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Efficient and Accurate Optimal Transport with Mirror Descent and
Conjugate Gradients [15.128885770407132]
We design a novel algorithm for optimal transport by drawing from the entropic optimal transport, mirror descent and conjugate gradients literatures.
Our scalable and GPU parallelizable algorithm is able to compute the Wasserstein distance with extreme precision, reaching relative error rates of $10-8$ without numerical stability issues.
arXiv Detail & Related papers (2023-07-17T14:09:43Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
We show the first tight characterization of the optimal Hessian-dependent sample complexity.
A Hessian-independent algorithm universally achieves the optimal sample complexities for all Hessian instances.
The optimal sample complexities achieved by our algorithm remain valid for heavy-tailed noise distributions.
arXiv Detail & Related papers (2023-06-21T17:03:22Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Optimal transport with $f$-divergence regularization and generalized
Sinkhorn algorithm [0.0]
Entropic regularization provides a generalization of the original optimal transport problem.
replacing the Kullback-Leibler divergence with a general $f$-divergence leads to a natural generalization.
We propose a practical algorithm for computing the regularized optimal transport cost and its gradient.
arXiv Detail & Related papers (2021-05-29T16:37:31Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.