A Sinkhorn-type Algorithm for Constrained Optimal Transport
- URL: http://arxiv.org/abs/2403.05054v1
- Date: Fri, 8 Mar 2024 05:01:43 GMT
- Title: A Sinkhorn-type Algorithm for Constrained Optimal Transport
- Authors: Xun Tang, Holakou Rahmanian, Michael Shavlovsky, Kiran Koshy
Thekumparampil, Tesi Xiao, Lexing Ying
- Abstract summary: This work focuses on a general class of OT problems under a combination of equality and inequality constraints.
We derive the corresponding entropy regularization formulation and introduce a Sinkhorn-type algorithm for such constrained OT problems supported by theoretical guarantees.
Overall, this work systematically combines recent theoretical and numerical advances in entropic optimal transport with the constrained case, allowing practitioners to derive approximate transport plans in complex scenarios.
- Score: 14.935188572016635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entropic optimal transport (OT) and the Sinkhorn algorithm have made it
practical for machine learning practitioners to perform the fundamental task of
calculating transport distance between statistical distributions. In this work,
we focus on a general class of OT problems under a combination of equality and
inequality constraints. We derive the corresponding entropy regularization
formulation and introduce a Sinkhorn-type algorithm for such constrained OT
problems supported by theoretical guarantees. We first bound the approximation
error when solving the problem through entropic regularization, which reduces
exponentially with the increase of the regularization parameter. Furthermore,
we prove a sublinear first-order convergence rate of the proposed Sinkhorn-type
algorithm in the dual space by characterizing the optimization procedure with a
Lyapunov function. To achieve fast and higher-order convergence under weak
entropy regularization, we augment the Sinkhorn-type algorithm with dynamic
regularization scheduling and second-order acceleration. Overall, this work
systematically combines recent theoretical and numerical advances in entropic
optimal transport with the constrained case, allowing practitioners to derive
approximate transport plans in complex scenarios.
Related papers
- Distributed Optimization via Energy Conservation Laws in Dilated Coordinates [5.35599092568615]
This paper introduces an energy conservation approach for analyzing continuous-time dynamical systems in dilated coordinates.
convergence rates can be explicitly expressed in terms of the inverse time-dilation factor.
Its accelerated convergence behavior is benchmarked against various state-of-the-art distributed optimization algorithms on practical, large-scale problems.
arXiv Detail & Related papers (2024-09-28T08:02:43Z) - Optimal Transport with Tempered Exponential Measures [33.07787452859956]
We show that a generalization of exponential families with indirect measure normalization gets to a very convenient middle ground.
Our formulation fits naturally in the unbalanced optimal transport problem setting.
arXiv Detail & Related papers (2023-09-07T20:53:23Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - First-Order Algorithms for Nonlinear Generalized Nash Equilibrium
Problems [88.58409977434269]
We consider the problem of computing an equilibrium in a class of nonlinear generalized Nash equilibrium problems (NGNEPs)
Our contribution is to provide two simple first-order algorithmic frameworks based on the quadratic penalty method and the augmented Lagrangian method.
We provide nonasymptotic theoretical guarantees for these algorithms.
arXiv Detail & Related papers (2022-04-07T00:11:05Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Optimal transport with $f$-divergence regularization and generalized
Sinkhorn algorithm [0.0]
Entropic regularization provides a generalization of the original optimal transport problem.
replacing the Kullback-Leibler divergence with a general $f$-divergence leads to a natural generalization.
We propose a practical algorithm for computing the regularized optimal transport cost and its gradient.
arXiv Detail & Related papers (2021-05-29T16:37:31Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - SONIA: A Symmetric Blockwise Truncated Optimization Algorithm [2.9923891863939938]
This work presents a new algorithm for empirical risk.
The algorithm bridges the gap between first- and second-order search methods by computing a second-order search-type update in one subspace, coupled with a scaled steepest descent step in the Theoretical complement.
arXiv Detail & Related papers (2020-06-06T19:28:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.