Node Classification With Integrated Reject Option
- URL: http://arxiv.org/abs/2412.03190v1
- Date: Wed, 04 Dec 2024 10:22:34 GMT
- Title: Node Classification With Integrated Reject Option
- Authors: Uday Bhaskar, Jayadratha Gayen, Charu Sharma, Naresh Manwani,
- Abstract summary: We propose NCwR, a novel approach to node classification in Graph Neural Networks (GNNs) with an integrated reject option.
We perform experiments using our method on three standard citation network datasets Cora, Citeseer and Pubmed.
- Score: 6.0497759658090775
- License:
- Abstract: One of the key tasks in graph learning is node classification. While Graph neural networks have been used for various applications, their adaptivity to reject option setting is not previously explored. In this paper, we propose NCwR, a novel approach to node classification in Graph Neural Networks (GNNs) with an integrated reject option, which allows the model to abstain from making predictions when uncertainty is high. We propose both cost-based and coverage-based methods for classification with abstention in node classification setting using GNNs. We perform experiments using our method on three standard citation network datasets Cora, Citeseer and Pubmed and compare with relevant baselines. We also model the Legal judgment prediction problem on ILDC dataset as a node classification problem where nodes represent legal cases and edges represent citations. We further interpret the model by analyzing the cases that the model abstains from predicting by visualizing which part of the input features influenced this decision.
Related papers
- Revisiting Neighborhood Aggregation in Graph Neural Networks for Node Classification using Statistical Signal Processing [4.184419714263417]
We reevaluating the concept of neighborhood aggregation, which is a fundamental component in graph neural networks (GNNs)
Our analysis reveals conceptual flaws within certain benchmark GNN models when operating under the assumption of edge-independent node labels.
arXiv Detail & Related papers (2024-07-21T22:37:24Z) - Graph Mining under Data scarcity [6.229055041065048]
We propose an Uncertainty Estimator framework that can be applied on top of any generic Graph Neural Networks (GNNs)
We train these models under the classic episodic learning paradigm in the $n$-way, $k$-shot fashion, in an end-to-end setting.
Our method outperforms the baselines, which demonstrates the efficacy of the Uncertainty Estimator for Few-shot node classification on graphs with a GNN.
arXiv Detail & Related papers (2024-06-07T10:50:03Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Population Graph Cross-Network Node Classification for Autism Detection
Across Sample Groups [10.699937593876669]
Cross-network node classification extends GNN techniques to account for domain drift.
We present OTGCN, a powerful, novel approach to cross-network node classification.
We demonstrate the effectiveness of this approach at classifying Autism Spectrum Disorder subjects.
arXiv Detail & Related papers (2024-01-10T18:04:12Z) - Domain-adaptive Message Passing Graph Neural Network [67.35534058138387]
Cross-network node classification (CNNC) aims to classify nodes in a label-deficient target network by transferring the knowledge from a source network with abundant labels.
We propose a domain-adaptive message passing graph neural network (DM-GNN), which integrates graph neural network (GNN) with conditional adversarial domain adaptation.
arXiv Detail & Related papers (2023-08-31T05:26:08Z) - Neural Structured Prediction for Inductive Node Classification [29.908759584092167]
This paper studies node classification in the inductive setting, aiming to learn a model on labeled training graphs and generalize it to infer node labels on unlabeled test graphs.
We present a new approach called the Structured Proxy Network (SPN), which combines the advantages of both worlds.
arXiv Detail & Related papers (2022-04-15T15:50:27Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - Graph Neural Network with Curriculum Learning for Imbalanced Node
Classification [21.085314408929058]
Graph Neural Network (GNN) is an emerging technique for graph-based learning tasks such as node classification.
In this work, we reveal the vulnerability of GNN to the imbalance of node labels.
We propose a novel graph neural network framework with curriculum learning (GNN-CL) consisting of two modules.
arXiv Detail & Related papers (2022-02-05T10:46:11Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks.
We propose a novel scheme dedicated to overcoming this problem and hence strengthen continual learning in graph neural networks (GNNs)
At the heart of our approach is a generic module, termed as topology-aware weight preserving(TWP)
arXiv Detail & Related papers (2020-12-10T22:30:25Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z) - Unifying Graph Convolutional Neural Networks and Label Propagation [73.82013612939507]
We study the relationship between LPA and GCN in terms of two aspects: feature/label smoothing and feature/label influence.
Based on our theoretical analysis, we propose an end-to-end model that unifies GCN and LPA for node classification.
Our model can also be seen as learning attention weights based on node labels, which is more task-oriented than existing feature-based attention models.
arXiv Detail & Related papers (2020-02-17T03:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.