Parametric PerceptNet: A bio-inspired deep-net trained for Image Quality Assessment
- URL: http://arxiv.org/abs/2412.03210v2
- Date: Mon, 17 Feb 2025 11:53:44 GMT
- Title: Parametric PerceptNet: A bio-inspired deep-net trained for Image Quality Assessment
- Authors: Jorge Vila-Tomás, Pablo Hernández-Cámara, Valero Laparra, Jesús Malo,
- Abstract summary: We propose a vision model that combines the best of both worlds by using a parametric neural network architecture.
We show that the parametric models behave better during training and are easier to interpret as vision models.
- Score: 0.9999629695552196
- License:
- Abstract: Human vision models are at the core of image processing. For instance, classical approaches to the problem of image quality are based on models that include knowledge about human vision. However, nowadays, deep learning approaches have obtained competitive results by simply approaching this problem as regression of human decisions, and training an standard network on human-rated datasets. These approaches have the advantages of being easily adaptable to a particular problem and they fit very efficiently when data is available. However, mainly due to the excess of parameters, they have the problems of lack of interpretability, and over-fitting. Here we propose a vision model that combines the best of both worlds by using a parametric neural network architecture. We parameterize the layers to have bioplausible functionality, and provide a set of bioplausible parameters. We analyzed different versions of the model and compared it with the non-parametric version. The parametric models achieve a three orders of magnitude reduction in the number of parameters without suffering in regression performance. Furthermore, we show that the parametric models behave better during training and are easier to interpret as vision models. Interestingly, we find that, even initialized with bioplausible trained for regression using human rated datasets, which we call the feature-spreading problem. This suggests that the deep learning approach is inherently flawed, and emphasizes the need to evaluate and train models beyond regression.
Related papers
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Optimizing Dense Feed-Forward Neural Networks [0.0]
We propose a novel feed-forward neural network constructing method based on pruning and transfer learning.
Our approach can compress the number of parameters by more than 70%.
We also evaluate the transfer learning level comparing the refined model and the original one training from scratch a neural network.
arXiv Detail & Related papers (2023-12-16T23:23:16Z) - Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models [115.501751261878]
Fine-tuning language models(LMs) on human-generated data remains a prevalent practice.
We investigate whether we can go beyond human data on tasks where we have access to scalar feedback.
We find that ReST$EM$ scales favorably with model size and significantly surpasses fine-tuning only on human data.
arXiv Detail & Related papers (2023-12-11T18:17:43Z) - Toward Physically Plausible Data-Driven Models: A Novel Neural Network
Approach to Symbolic Regression [2.7071541526963805]
This paper proposes a novel neural network-based symbolic regression method.
It constructs physically plausible models based on even very small training data sets and prior knowledge about the system.
We experimentally evaluate the approach on four test systems: the TurtleBot 2 mobile robot, the magnetic manipulation system, the equivalent resistance of two resistors in parallel, and the longitudinal force of the anti-lock braking system.
arXiv Detail & Related papers (2023-02-01T22:05:04Z) - Quantifying Human Bias and Knowledge to guide ML models during Training [0.0]
We introduce an experimental approach to dealing with skewed datasets by including humans in the training process.
We ask humans to rank the importance of features of the dataset, and through rank aggregation, determine the initial weight bias for the model.
We show that collective human bias can allow ML models to learn insights about the true population instead of the biased sample.
arXiv Detail & Related papers (2022-11-19T20:49:07Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
This paper focuses on the problem of 3D human reconstruction from 2D evidence.
We recast the problem as learning a mapping from the input to a distribution of plausible 3D poses.
arXiv Detail & Related papers (2021-08-26T17:55:11Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - Partial success in closing the gap between human and machine vision [30.78663978510427]
A few years ago, the first CNN surpassed human performance on ImageNet.
Here we ask: Are we making progress in closing the gap between human and machine vision?
We tested human observers on a broad range of out-of-distribution (OOD) datasets.
arXiv Detail & Related papers (2021-06-14T13:23:35Z) - Reinforcement Based Learning on Classification Task Could Yield Better
Generalization and Adversarial Accuracy [0.0]
We propose a novel method to train deep learning models on an image classification task.
We use a reward-based optimization function, similar to the vanilla policy gradient method used in reinforcement learning.
arXiv Detail & Related papers (2020-12-08T11:03:17Z) - Hidden Footprints: Learning Contextual Walkability from 3D Human Trails [70.01257397390361]
Current datasets only tell you where people are, not where they could be.
We first augment the set of valid, labeled walkable regions by propagating person observations between images, utilizing 3D information to create what we call hidden footprints.
We devise a training strategy designed for such sparse labels, combining a class-balanced classification loss with a contextual adversarial loss.
arXiv Detail & Related papers (2020-08-19T23:19:08Z) - Neural Descent for Visual 3D Human Pose and Shape [67.01050349629053]
We present deep neural network methodology to reconstruct the 3d pose and shape of people, given an input RGB image.
We rely on a recently introduced, expressivefull body statistical 3d human model, GHUM, trained end-to-end.
Central to our methodology, is a learning to learn and optimize approach, referred to as HUmanNeural Descent (HUND), which avoids both second-order differentiation.
arXiv Detail & Related papers (2020-08-16T13:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.