Parametric PerceptNet: A bio-inspired deep-net trained for Image Quality Assessment
- URL: http://arxiv.org/abs/2412.03210v2
- Date: Mon, 17 Feb 2025 11:53:44 GMT
- Title: Parametric PerceptNet: A bio-inspired deep-net trained for Image Quality Assessment
- Authors: Jorge Vila-Tomás, Pablo Hernández-Cámara, Valero Laparra, Jesús Malo,
- Abstract summary: We propose a vision model that combines the best of both worlds by using a parametric neural network architecture.<n>We show that the parametric models behave better during training and are easier to interpret as vision models.
- Score: 0.9999629695552196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human vision models are at the core of image processing. For instance, classical approaches to the problem of image quality are based on models that include knowledge about human vision. However, nowadays, deep learning approaches have obtained competitive results by simply approaching this problem as regression of human decisions, and training an standard network on human-rated datasets. These approaches have the advantages of being easily adaptable to a particular problem and they fit very efficiently when data is available. However, mainly due to the excess of parameters, they have the problems of lack of interpretability, and over-fitting. Here we propose a vision model that combines the best of both worlds by using a parametric neural network architecture. We parameterize the layers to have bioplausible functionality, and provide a set of bioplausible parameters. We analyzed different versions of the model and compared it with the non-parametric version. The parametric models achieve a three orders of magnitude reduction in the number of parameters without suffering in regression performance. Furthermore, we show that the parametric models behave better during training and are easier to interpret as vision models. Interestingly, we find that, even initialized with bioplausible trained for regression using human rated datasets, which we call the feature-spreading problem. This suggests that the deep learning approach is inherently flawed, and emphasizes the need to evaluate and train models beyond regression.
Related papers
- Reconstructing Humans with a Biomechanically Accurate Skeleton [55.06027148976482]
We introduce a method for reconstructing 3D humans from a single image using a biomechanically accurate skeleton model.
Compared to state-of-the-art methods for 3D human mesh recovery, our model achieves competitive performance on standard benchmarks.
arXiv Detail & Related papers (2025-03-27T17:56:24Z) - Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
We propose a new perspective on parameterization by investigating a key assumption in prior work.
Our empirical investigation includes tens of thousands of models trained with all combinations of threes.
We find that the best learning rate scaling prescription would often have been excluded by the assumptions in prior work.
arXiv Detail & Related papers (2024-07-08T12:32:51Z) - Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
We propose integrating deep features from pre-trained visual models with a statistical analysis model to achieve opinion-unaware BIQA (OU-BIQA)
Our proposed model exhibits superior consistency with human visual perception compared to state-of-the-art BIQA models.
arXiv Detail & Related papers (2024-05-29T06:09:34Z) - Optimizing Dense Feed-Forward Neural Networks [0.0]
We propose a novel feed-forward neural network constructing method based on pruning and transfer learning.
Our approach can compress the number of parameters by more than 70%.
We also evaluate the transfer learning level comparing the refined model and the original one training from scratch a neural network.
arXiv Detail & Related papers (2023-12-16T23:23:16Z) - Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models [115.501751261878]
Fine-tuning language models(LMs) on human-generated data remains a prevalent practice.
We investigate whether we can go beyond human data on tasks where we have access to scalar feedback.
We find that ReST$EM$ scales favorably with model size and significantly surpasses fine-tuning only on human data.
arXiv Detail & Related papers (2023-12-11T18:17:43Z) - Toward Physically Plausible Data-Driven Models: A Novel Neural Network
Approach to Symbolic Regression [2.7071541526963805]
This paper proposes a novel neural network-based symbolic regression method.
It constructs physically plausible models based on even very small training data sets and prior knowledge about the system.
We experimentally evaluate the approach on four test systems: the TurtleBot 2 mobile robot, the magnetic manipulation system, the equivalent resistance of two resistors in parallel, and the longitudinal force of the anti-lock braking system.
arXiv Detail & Related papers (2023-02-01T22:05:04Z) - Quantifying Human Bias and Knowledge to guide ML models during Training [0.0]
We introduce an experimental approach to dealing with skewed datasets by including humans in the training process.
We ask humans to rank the importance of features of the dataset, and through rank aggregation, determine the initial weight bias for the model.
We show that collective human bias can allow ML models to learn insights about the true population instead of the biased sample.
arXiv Detail & Related papers (2022-11-19T20:49:07Z) - Supervised Parameter Estimation of Neuron Populations from Multiple
Firing Events [3.2826301276626273]
We study an automatic approach of learning the parameters of neuron populations from a training set consisting of pairs of spiking series and parameter labels via supervised learning.
We simulate many neuronal populations at computation at different parameter settings using a neuron model.
We then compare their performance against classical approaches including a genetic search, Bayesian sequential estimation, and a random walk approximate model.
arXiv Detail & Related papers (2022-10-02T03:17:05Z) - Diversity vs. Recognizability: Human-like generalization in one-shot
generative models [5.964436882344729]
We propose a new framework to evaluate one-shot generative models along two axes: sample recognizability vs. diversity.
We first show that GAN-like and VAE-like models fall on opposite ends of the diversity-recognizability space.
In contrast, disentanglement transports the model along a parabolic curve that could be used to maximize recognizability.
arXiv Detail & Related papers (2022-05-20T13:17:08Z) - Uninorm-like parametric activation functions for human-understandable
neural models [0.8808021343665319]
We present a deep learning model for finding human-understandable connections between input features.
Our approach uses a parameterized, differentiable activation function, based on the theoretical background of fuzzy logic and multi-criteria decision-making.
We demonstrate the utility and effectiveness of the model by successfully applying it to classification problems from the UCI Machine Learning Repository.
arXiv Detail & Related papers (2022-05-13T10:25:02Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
We propose a novel neural implicit representation for the human body.
It is fully differentiable and optimizable with disentangled shape and pose latent spaces.
Our model can be trained and fine-tuned directly on non-watertight raw data with well-designed losses.
arXiv Detail & Related papers (2021-11-30T04:10:57Z) - Towards a Unified View of Parameter-Efficient Transfer Learning [108.94786930869473]
Fine-tuning large pre-trained language models on downstream tasks has become the de-facto learning paradigm in NLP.
Recent work has proposed a variety of parameter-efficient transfer learning methods that only fine-tune a small number of (extra) parameters to attain strong performance.
We break down the design of state-of-the-art parameter-efficient transfer learning methods and present a unified framework that establishes connections between them.
arXiv Detail & Related papers (2021-10-08T20:22:26Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
This paper focuses on the problem of 3D human reconstruction from 2D evidence.
We recast the problem as learning a mapping from the input to a distribution of plausible 3D poses.
arXiv Detail & Related papers (2021-08-26T17:55:11Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - Partial success in closing the gap between human and machine vision [30.78663978510427]
A few years ago, the first CNN surpassed human performance on ImageNet.
Here we ask: Are we making progress in closing the gap between human and machine vision?
We tested human observers on a broad range of out-of-distribution (OOD) datasets.
arXiv Detail & Related papers (2021-06-14T13:23:35Z) - Provable Benefits of Overparameterization in Model Compression: From
Double Descent to Pruning Neural Networks [38.153825455980645]
Recent empirical evidence indicates that the practice of overization not only benefits training large models, but also assists - perhaps counterintuitively - building lightweight models.
This paper sheds light on these empirical findings by theoretically characterizing the high-dimensional toolsets of model pruning.
We analytically identify regimes in which, even if the location of the most informative features is known, we are better off fitting a large model and then pruning.
arXiv Detail & Related papers (2020-12-16T05:13:30Z) - Reinforcement Based Learning on Classification Task Could Yield Better
Generalization and Adversarial Accuracy [0.0]
We propose a novel method to train deep learning models on an image classification task.
We use a reward-based optimization function, similar to the vanilla policy gradient method used in reinforcement learning.
arXiv Detail & Related papers (2020-12-08T11:03:17Z) - Hidden Footprints: Learning Contextual Walkability from 3D Human Trails [70.01257397390361]
Current datasets only tell you where people are, not where they could be.
We first augment the set of valid, labeled walkable regions by propagating person observations between images, utilizing 3D information to create what we call hidden footprints.
We devise a training strategy designed for such sparse labels, combining a class-balanced classification loss with a contextual adversarial loss.
arXiv Detail & Related papers (2020-08-19T23:19:08Z) - Neural Descent for Visual 3D Human Pose and Shape [67.01050349629053]
We present deep neural network methodology to reconstruct the 3d pose and shape of people, given an input RGB image.
We rely on a recently introduced, expressivefull body statistical 3d human model, GHUM, trained end-to-end.
Central to our methodology, is a learning to learn and optimize approach, referred to as HUmanNeural Descent (HUND), which avoids both second-order differentiation.
arXiv Detail & Related papers (2020-08-16T13:38:41Z) - A Semiparametric Approach to Interpretable Machine Learning [9.87381939016363]
Black box models in machine learning have demonstrated excellent predictive performance in complex problems and high-dimensional settings.
Their lack of transparency and interpretability restrict the applicability of such models in critical decision-making processes.
We propose a novel approach to trading off interpretability and performance in prediction models using ideas from semiparametric statistics.
arXiv Detail & Related papers (2020-06-08T16:38:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.