Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics
- URL: http://arxiv.org/abs/2405.18790v1
- Date: Wed, 29 May 2024 06:09:34 GMT
- Title: Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics
- Authors: Zhangkai Ni, Yue Liu, Keyan Ding, Wenhan Yang, Hanli Wang, Shiqi Wang,
- Abstract summary: We propose integrating deep features from pre-trained visual models with a statistical analysis model to achieve opinion-unaware BIQA (OU-BIQA)
Our proposed model exhibits superior consistency with human visual perception compared to state-of-the-art BIQA models.
- Score: 54.08757792080732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based methods have significantly influenced the blind image quality assessment (BIQA) field, however, these methods often require training using large amounts of human rating data. In contrast, traditional knowledge-based methods are cost-effective for training but face challenges in effectively extracting features aligned with human visual perception. To bridge these gaps, we propose integrating deep features from pre-trained visual models with a statistical analysis model into a Multi-scale Deep Feature Statistics (MDFS) model for achieving opinion-unaware BIQA (OU-BIQA), thereby eliminating the reliance on human rating data and significantly improving training efficiency. Specifically, we extract patch-wise multi-scale features from pre-trained vision models, which are subsequently fitted into a multivariate Gaussian (MVG) model. The final quality score is determined by quantifying the distance between the MVG model derived from the test image and the benchmark MVG model derived from the high-quality image set. A comprehensive series of experiments conducted on various datasets show that our proposed model exhibits superior consistency with human visual perception compared to state-of-the-art BIQA models. Furthermore, it shows improved generalizability across diverse target-specific BIQA tasks. Our code is available at: https://github.com/eezkni/MDFS
Related papers
- Sliced Maximal Information Coefficient: A Training-Free Approach for Image Quality Assessment Enhancement [12.628718661568048]
We aim to explore a generalized human visual attention estimation strategy to mimic the process of human quality rating.
In particular, we model human attention generation by measuring the statistical dependency between the degraded image and the reference image.
Experimental results verify the performance of existing IQA models can be consistently improved when our attention module is incorporated.
arXiv Detail & Related papers (2024-08-19T11:55:32Z) - PTM-VQA: Efficient Video Quality Assessment Leveraging Diverse PreTrained Models from the Wild [27.195339506769457]
Video quality assessment (VQA) is a challenging problem due to the numerous factors that can affect the perceptual quality of a video.
Annotating the Mean opinion score (MOS) for videos is expensive and time-consuming, which limits the scale of VQA datasets.
We propose a VQA method named PTM-VQA, which leverages PreTrained Models to transfer knowledge from models pretrained on various pre-tasks.
arXiv Detail & Related papers (2024-05-28T02:37:29Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Learning Generalizable Perceptual Representations for Data-Efficient
No-Reference Image Quality Assessment [7.291687946822539]
A major drawback of state-of-the-art NR-IQA techniques is their reliance on a large number of human annotations.
We enable the learning of low-level quality features to distortion types by introducing a novel quality-aware contrastive loss.
We design zero-shot quality predictions from both pathways in a completely blind setting.
arXiv Detail & Related papers (2023-12-08T05:24:21Z) - MD-IQA: Learning Multi-scale Distributed Image Quality Assessment with
Semi Supervised Learning for Low Dose CT [6.158876574189994]
Image quality assessment (IQA) plays a critical role in optimizing radiation dose and developing novel medical imaging techniques.
Recent deep learning-based approaches have demonstrated strong modeling capabilities and potential for medical IQA.
We propose a multi-scale distributions regression approach to predict quality scores by constraining the output distribution.
arXiv Detail & Related papers (2023-11-14T09:33:33Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Blind Multimodal Quality Assessment: A Brief Survey and A Case Study of
Low-light Images [73.27643795557778]
Blind image quality assessment (BIQA) aims at automatically and accurately forecasting objective scores for visual signals.
Recent developments in this field are dominated by unimodal solutions inconsistent with human subjective rating patterns.
We present a unique blind multimodal quality assessment (BMQA) of low-light images from subjective evaluation to objective score.
arXiv Detail & Related papers (2023-03-18T09:04:55Z) - Continual Learning for Blind Image Quality Assessment [80.55119990128419]
Blind image quality assessment (BIQA) models fail to continually adapt to subpopulation shift.
Recent work suggests training BIQA methods on the combination of all available human-rated IQA datasets.
We formulate continual learning for BIQA, where a model learns continually from a stream of IQA datasets.
arXiv Detail & Related papers (2021-02-19T03:07:01Z) - Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and
Wild [98.48284827503409]
We develop a textitunified BIQA model and an approach of training it for both synthetic and realistic distortions.
We employ the fidelity loss to optimize a deep neural network for BIQA over a large number of such image pairs.
Experiments on six IQA databases show the promise of the learned method in blindly assessing image quality in the laboratory and wild.
arXiv Detail & Related papers (2020-05-28T13:35:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.