Linq-Embed-Mistral Technical Report
- URL: http://arxiv.org/abs/2412.03223v1
- Date: Wed, 04 Dec 2024 11:18:32 GMT
- Title: Linq-Embed-Mistral Technical Report
- Authors: Chanyeol Choi, Junseong Kim, Seolhwa Lee, Jihoon Kwon, Sangmo Gu, Yejin Kim, Minkyung Cho, Jy-yong Sohn,
- Abstract summary: Linq-Embed-Mistral excels in the MTEB benchmarks (as of May 29, 2024)
Linq-Embed-Mistral ranks 1st among all models for retrieval tasks on the MTEB leaderboard with a performance score of 60.2.
- Score: 11.77727725268191
- License:
- Abstract: This report explores the enhancement of text retrieval performance using advanced data refinement techniques. We develop Linq-Embed-Mistral\footnote{\url{https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral}} by building on the E5-mistral and Mistral-7B-v0.1 models, focusing on sophisticated data crafting, data filtering, and negative mining methods, which are highly tailored to each task, applied to both existing benchmark dataset and highly tailored synthetic dataset generated via large language models (LLMs). Linq-Embed-Mistral excels in the MTEB benchmarks (as of May 29, 2024), achieving an average score of 68.2 across 56 datasets, and ranks 1st among all models for retrieval tasks on the MTEB leaderboard with a performance score of 60.2. This performance underscores its superior capability in enhancing search precision and reliability. Our contributions include advanced data refinement methods that significantly improve model performance on benchmark and synthetic datasets, techniques for homogeneous task ordering and mixed task fine-tuning to enhance model generalization and stability, and a streamlined evaluation process using 4-bit precision and a light retrieval evaluation set, which accelerates validation without sacrificing accuracy.
Related papers
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - Crafting Efficient Fine-Tuning Strategies for Large Language Models [2.633490094119608]
Fine-tuning large language models (LLMs) with as few as 200 samples can improve model accuracy from 70% to 88% in a product attribute extraction task.
A bayesian hyperparameter optimization method, which evaluates models at 20% of total training time, correlates strongly with final model performance.
This approach led to a 2% improvement in accuracy over baseline models when evaluated on an independent test set.
arXiv Detail & Related papers (2024-07-18T21:36:00Z) - NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models [38.41524186248607]
We introduce the NV-Embed model, incorporating architectural designs, training procedures, and curated datasets.
For model architecture, we propose a latent attention layer to obtain pooled embeddings, which consistently improves retrieval and downstream task accuracy.
For training data, we utilize the hard-negative mining, synthetic data generation and existing public available datasets to boost the performance of embedding model.
arXiv Detail & Related papers (2024-05-27T17:59:45Z) - An Integrated Data Processing Framework for Pretraining Foundation Models [57.47845148721817]
Researchers and practitioners often have to manually curate datasets from difference sources.
We propose a data processing framework that integrates a Processing Module and an Analyzing Module.
The proposed framework is easy to use and highly flexible.
arXiv Detail & Related papers (2024-02-26T07:22:51Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - TarGEN: Targeted Data Generation with Large Language Models [51.87504111286201]
TarGEN is a multi-step prompting strategy for generating high-quality synthetic datasets.
We augment TarGEN with a method known as self-correction empowering LLMs to rectify inaccurately labeled instances.
A comprehensive analysis of the synthetic dataset compared to the original dataset reveals similar or higher levels of dataset complexity and diversity.
arXiv Detail & Related papers (2023-10-27T03:32:17Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
We propose a novel closed-loop system that bridges data generation, model training, and evaluation.
Within each loop, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results.
For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data.
For quality, we resort to GPT-4 to generate high-quality data with each given data type.
arXiv Detail & Related papers (2023-08-25T01:41:04Z) - Instruction Mining: Instruction Data Selection for Tuning Large Language Models [18.378654454336136]
InstructMining is designed for automatically selecting premium instruction-following data for finetuning large language models.
We show that InstructMining achieves state-of-the-art performance on two of the most popular benchmarks: LLM-as-a-judge and Huggingface OpenLLM leaderboard.
arXiv Detail & Related papers (2023-07-12T16:37:31Z) - Exploiting Asymmetry for Synthetic Training Data Generation: SynthIE and
the Case of Information Extraction [28.51694365908817]
This work shows that useful data can be synthetically generated even for tasks that cannot be solved directly by large language models.
We synthetically generate a dataset of 1.8M data points, establish its superior quality compared to existing datasets in a human evaluation.
arXiv Detail & Related papers (2023-03-07T18:48:55Z) - GEMv2: Multilingual NLG Benchmarking in a Single Line of Code [161.1761414080574]
Generation, Evaluation, and Metrics Benchmark introduces a modular infrastructure for dataset, model, and metric developers.
GEMv2 supports 40 documented datasets in 51 languages.
Models for all datasets can be evaluated online and our interactive data card creation and rendering tools make it easier to add new datasets to the living benchmark.
arXiv Detail & Related papers (2022-06-22T17:52:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.