LuxEmbedder: A Cross-Lingual Approach to Enhanced Luxembourgish Sentence Embeddings
- URL: http://arxiv.org/abs/2412.03331v2
- Date: Thu, 05 Dec 2024 07:05:57 GMT
- Title: LuxEmbedder: A Cross-Lingual Approach to Enhanced Luxembourgish Sentence Embeddings
- Authors: Fred Philippy, Siwen Guo, Jacques Klein, Tegawendé F. Bissyandé,
- Abstract summary: Sentence embedding models rely heavily on parallel data, which can be scarce for many low-resource languages, including Luxembourgish.
This scarcity results in suboptimal performance of monolingual and cross-lingual sentence embedding models for these languages.
We present evidence suggesting that including low-resource languages in parallel training datasets can be more advantageous for other low-resource languages.
- Score: 8.839362558895594
- License:
- Abstract: Sentence embedding models play a key role in various Natural Language Processing tasks, such as in Topic Modeling, Document Clustering and Recommendation Systems. However, these models rely heavily on parallel data, which can be scarce for many low-resource languages, including Luxembourgish. This scarcity results in suboptimal performance of monolingual and cross-lingual sentence embedding models for these languages. To address this issue, we compile a relatively small but high-quality human-generated cross-lingual parallel dataset to train LuxEmbedder, an enhanced sentence embedding model for Luxembourgish with strong cross-lingual capabilities. Additionally, we present evidence suggesting that including low-resource languages in parallel training datasets can be more advantageous for other low-resource languages than relying solely on high-resource language pairs. Furthermore, recognizing the lack of sentence embedding benchmarks for low-resource languages, we create a paraphrase detection benchmark specifically for Luxembourgish, aiming to partially fill this gap and promote further research.
Related papers
- Text Generation Models for Luxembourgish with Limited Data: A Balanced Multilingual Strategy [7.59001382786429]
This paper addresses the challenges in developing language models for less-represented languages, with a focus on Luxembourgish.
We propose a novel text generation model based on the T5 architecture, combining limited Luxembourgish data with equal amounts of German and French data.
For the evaluation, we introduce LuxGen, a text generation benchmark that is the first of its kind for Luxembourgish.
arXiv Detail & Related papers (2024-12-12T16:23:12Z) - Enhancing Cross-lingual Sentence Embedding for Low-resource Languages with Word Alignment [13.997006139875563]
Cross-lingual word representation in low-resource languages is notably under-aligned with that in high-resource languages in current models.
We introduce a novel framework that explicitly aligns words between English and eight low-resource languages, utilizing off-the-shelf word alignment models.
arXiv Detail & Related papers (2024-04-03T05:58:53Z) - High-quality Data-to-Text Generation for Severely Under-Resourced
Languages with Out-of-the-box Large Language Models [5.632410663467911]
We explore the extent to which pretrained large language models (LLMs) can bridge the performance gap for under-resourced languages.
We find that LLMs easily set the state of the art for the under-resourced languages by substantial margins.
For all our languages, human evaluation shows on-a-par performance with humans for our best systems, but BLEU scores collapse compared to English.
arXiv Detail & Related papers (2024-02-19T16:29:40Z) - Zero-shot Sentiment Analysis in Low-Resource Languages Using a
Multilingual Sentiment Lexicon [78.12363425794214]
We focus on zero-shot sentiment analysis tasks across 34 languages, including 6 high/medium-resource languages, 25 low-resource languages, and 3 code-switching datasets.
We demonstrate that pretraining using multilingual lexicons, without using any sentence-level sentiment data, achieves superior zero-shot performance compared to models fine-tuned on English sentiment datasets.
arXiv Detail & Related papers (2024-02-03T10:41:05Z) - Transfer to a Low-Resource Language via Close Relatives: The Case Study
on Faroese [54.00582760714034]
Cross-lingual NLP transfer can be improved by exploiting data and models of high-resource languages.
We release a new web corpus of Faroese and Faroese datasets for named entity recognition (NER), semantic text similarity (STS) and new language models trained on all Scandinavian languages.
arXiv Detail & Related papers (2023-04-18T08:42:38Z) - Improving Cross-lingual Information Retrieval on Low-Resource Languages
via Optimal Transport Distillation [21.057178077747754]
In this work, we propose OPTICAL: Optimal Transport distillation for low-resource Cross-lingual information retrieval.
By separating the cross-lingual knowledge from knowledge of query document matching, OPTICAL only needs bitext data for distillation training.
Experimental results show that, with minimal training data, OPTICAL significantly outperforms strong baselines on low-resource languages.
arXiv Detail & Related papers (2023-01-29T22:30:36Z) - OneAligner: Zero-shot Cross-lingual Transfer with One Rich-Resource
Language Pair for Low-Resource Sentence Retrieval [91.76575626229824]
We present OneAligner, an alignment model specially designed for sentence retrieval tasks.
When trained with all language pairs of a large-scale parallel multilingual corpus (OPUS-100), this model achieves the state-of-the-art result.
We conclude through empirical results and analyses that the performance of the sentence alignment task depends mostly on the monolingual and parallel data size.
arXiv Detail & Related papers (2022-05-17T19:52:42Z) - From Masked Language Modeling to Translation: Non-English Auxiliary
Tasks Improve Zero-shot Spoken Language Understanding [24.149299722716155]
We introduce xSID, a new benchmark for cross-lingual Slot and Intent Detection in 13 languages from 6 language families, including a very low-resource dialect.
We propose a joint learning approach, with English SLU training data and non-English auxiliary tasks from raw text, syntax and translation for transfer.
Our results show that jointly learning the main tasks with masked language modeling is effective for slots, while machine translation transfer works best for intent classification.
arXiv Detail & Related papers (2021-05-15T23:51:11Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
We propose a new approach for learning contextualised cross-lingual word embeddings based on a small parallel corpus.
Our method obtains word embeddings via an LSTM encoder-decoder model that simultaneously translates and reconstructs an input sentence.
arXiv Detail & Related papers (2020-10-27T22:24:01Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
Cross-lingual Choice of Plausible Alternatives (XCOPA) is a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages.
We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods falls short compared to translation-based transfer.
arXiv Detail & Related papers (2020-05-01T12:22:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.