Assessing Foundation Models' Transferability to Physiological Signals in Precision Medicine
- URL: http://arxiv.org/abs/2412.03427v1
- Date: Wed, 04 Dec 2024 16:17:09 GMT
- Title: Assessing Foundation Models' Transferability to Physiological Signals in Precision Medicine
- Authors: Matthias Christenson, Cove Geary, Brian Locke, Pranav Koirala, Warren Woodrich Pettine,
- Abstract summary: This work introduces a systematic pipeline for evaluating foundation models' transfer capabilities in medical contexts.
First, it leverages physiological simulation software to generate diverse, clinically relevant scenarios.
Second, the pipeline projects these simulated signals through the foundation model to obtain embeddings, which are then evaluated using linear methods.
Third, the pipeline validates these representations through specific downstream medical tasks.
- Score: 0.0
- License:
- Abstract: The success of precision medicine requires computational models that can effectively process and interpret diverse physiological signals across heterogeneous patient populations. While foundation models have demonstrated remarkable transfer capabilities across various domains, their effectiveness in handling individual-specific physiological signals - crucial for precision medicine - remains largely unexplored. This work introduces a systematic pipeline for rapidly and efficiently evaluating foundation models' transfer capabilities in medical contexts. Our pipeline employs a three-stage approach. First, it leverages physiological simulation software to generate diverse, clinically relevant scenarios, particularly focusing on data-scarce medical conditions. This simulation-based approach enables both targeted capability assessment and subsequent model fine-tuning. Second, the pipeline projects these simulated signals through the foundation model to obtain embeddings, which are then evaluated using linear methods. This evaluation quantifies the model's ability to capture three critical aspects: physiological feature independence, temporal dynamics preservation, and medical scenario differentiation. Finally, the pipeline validates these representations through specific downstream medical tasks. Initial testing of our pipeline on the Moirai time series foundation model revealed significant limitations in physiological signal processing, including feature entanglement, temporal dynamics distortion, and reduced scenario discrimination. These findings suggest that current foundation models may require substantial architectural modifications or targeted fine-tuning before deployment in clinical settings.
Related papers
- Data-Efficient Inference of Neural Fluid Fields via SciML Foundation Model [49.06911227670408]
We show that SciML foundation model can significantly improve the data efficiency of inferring real-world 3D fluid dynamics with improved generalization.
We equip neural fluid fields with a novel collaborative training approach that utilizes augmented views and fluid features extracted by our foundation model.
arXiv Detail & Related papers (2024-12-18T14:39:43Z) - Toward Foundation Model for Multivariate Wearable Sensing of Physiological Signals [2.370585289844609]
We propose a foundation model for wearable sensing physiological signals called NormWear.
For a holistic assessment, we perform downstream evaluation on 11 public wearable sensing datasets.
We demonstrate that NormWear achieves a better performance improvement over competitive baselines in general time series foundation modeling.
arXiv Detail & Related papers (2024-12-12T23:35:18Z) - Benchmarking Pathology Foundation Models: Adaptation Strategies and Scenarios [2.1953732467962324]
We benchmark four pathology-specific foundation models across 14 datasets and two scenarios-consistency assessment and flexibility assessment.
We found that the parameter-efficient fine-tuning approach was both efficient and effective for adapting pathology-specific foundation models to diverse datasets within the same downstream task.
arXiv Detail & Related papers (2024-10-21T14:10:18Z) - From Noise to Signal: Unveiling Treatment Effects from Digital Health
Data through Pharmacology-Informed Neural-SDE [0.0]
Digital health technologies (DHT) provide personalized, continuous, and real-time monitoring of patient.
Gaining insight from these technologies requires appropriate modeling techniques to capture clinically-relevant changes in disease state.
We present a novel pharmacology-informed neural differential equation (SDE) model capable of addressing these challenges.
arXiv Detail & Related papers (2024-03-05T19:13:57Z) - Physics-informed Neural Network Estimation of Material Properties in Soft Tissue Nonlinear Biomechanical Models [2.8763745263714005]
We propose a new approach which relies on the combination of physics-informed neural networks (PINNs) with three-dimensional soft tissue nonlinear biomechanical models.
The proposed learning algorithm encodes information from a limited amount of displacement and, in some cases, strain data, that can be routinely acquired in the clinical setting.
Several benchmarks are presented to show the accuracy and robustness of the proposed method.
arXiv Detail & Related papers (2023-12-15T13:41:20Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - OutbreakFlow: Model-based Bayesian inference of disease outbreak
dynamics with invertible neural networks and its application to the COVID-19
pandemics in Germany [0.19791587637442667]
We present a novel combination of epidemiological modeling with specialized neural networks.
We are able to obtain reliable probabilistic estimates for important disease characteristics, such as generation time, fraction of undetected infections, likelihood of transmission before symptom onset, and reporting delays using a very moderate amount of real-world observations.
arXiv Detail & Related papers (2020-10-01T11:01:49Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.