Data-Efficient Inference of Neural Fluid Fields via SciML Foundation Model
- URL: http://arxiv.org/abs/2412.13897v1
- Date: Wed, 18 Dec 2024 14:39:43 GMT
- Title: Data-Efficient Inference of Neural Fluid Fields via SciML Foundation Model
- Authors: Yuqiu Liu, Jingxuan Xu, Mauricio Soroco, Yunchao Wei, Wuyang Chen,
- Abstract summary: We show that SciML foundation model can significantly improve the data efficiency of inferring real-world 3D fluid dynamics with improved generalization.
We equip neural fluid fields with a novel collaborative training approach that utilizes augmented views and fluid features extracted by our foundation model.
- Score: 49.06911227670408
- License:
- Abstract: Recent developments in 3D vision have enabled successful progress in inferring neural fluid fields and realistic rendering of fluid dynamics. However, these methods require real-world flow captures, which demand dense video sequences and specialized lab setups, making the process costly and challenging. Scientific machine learning (SciML) foundation models, which are pretrained on extensive simulations of partial differential equations (PDEs), encode rich multiphysics knowledge and thus provide promising sources of domain priors for inferring fluid fields. Nevertheless, their potential to advance real-world vision problems remains largely underexplored, raising questions about the transferability and practical utility of these foundation models. In this work, we demonstrate that SciML foundation model can significantly improve the data efficiency of inferring real-world 3D fluid dynamics with improved generalization. At the core of our method is leveraging the strong forecasting capabilities and meaningful representations of SciML foundation models. We equip neural fluid fields with a novel collaborative training approach that utilizes augmented views and fluid features extracted by our foundation model. Our method demonstrates significant improvements in both quantitative metrics and visual quality, showcasing the practical applicability of SciML foundation models in real-world fluid dynamics.
Related papers
- Physically Interpretable Representation and Controlled Generation for Turbulence Data [39.42376941186934]
This paper proposes a data-driven approach to encode high-dimensional scientific data into low-dimensional, physically meaningful representations.
We validate our approach using 2D Navier-Stokes simulations of flow past a cylinder over a range of Reynolds numbers.
arXiv Detail & Related papers (2025-01-31T17:51:14Z) - Geometry Matters: Benchmarking Scientific ML Approaches for Flow Prediction around Complex Geometries [23.111935712144277]
Rapid yet accurate simulations of fluid dynamics around complex geometries is critical in a variety of engineering and scientific applications.
While scientific machine learning (SciML) has shown promise, most studies are constrained to simple geometries.
This study addresses this gap by benchmarking diverse SciML models for fluid flow prediction over intricate geometries.
arXiv Detail & Related papers (2024-12-31T00:23:15Z) - An Efficient Occupancy World Model via Decoupled Dynamic Flow and Image-assisted Training [50.71892161377806]
DFIT-OccWorld is an efficient 3D occupancy world model that leverages decoupled dynamic flow and image-assisted training strategy.
Our model forecasts future dynamic voxels by warping existing observations using voxel flow, whereas static voxels are easily obtained through pose transformation.
arXiv Detail & Related papers (2024-12-18T12:10:33Z) - A Pioneering Neural Network Method for Efficient and Robust Fluid Simulation [4.694954114339147]
We propose the first neural network method specifically designed for efficient and robust fluid simulation in complex environments.
This model is also the first to be capable of stably modeling fluid particle dynamics in such complex scenarios.
Compared to existing neural network-based fluid simulation algorithms, we significantly enhanced accuracy while maintaining high computational speed.
arXiv Detail & Related papers (2024-12-14T08:31:56Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video [58.043569985784806]
We introduce latent intuitive physics, a transfer learning framework for physics simulation.
It can infer hidden properties of fluids from a single 3D video and simulate the observed fluid in novel scenes.
We validate our model in three ways: (i) novel scene simulation with the learned visual-world physics, (ii) future prediction of the observed fluid dynamics, and (iii) supervised particle simulation.
arXiv Detail & Related papers (2024-06-18T16:37:44Z) - FLUID-LLM: Learning Computational Fluid Dynamics with Spatiotemporal-aware Large Language Models [15.964726158869777]
Large language models (LLMs) have shown remarkable pattern recognition and reasoning abilities.
We introduce FLUID-LLM, a novel framework combining pre-trained LLMs with pre-aware encoding to predict unsteady fluid dynamics.
Our results demonstrate that FLUID-LLM effectively integratestemporal information into pre-trained LLMs, enhancing CFD task performance.
arXiv Detail & Related papers (2024-06-06T20:55:40Z) - Pre-training via Denoising for Molecular Property Prediction [53.409242538744444]
We describe a pre-training technique that utilizes large datasets of 3D molecular structures at equilibrium.
Inspired by recent advances in noise regularization, our pre-training objective is based on denoising.
arXiv Detail & Related papers (2022-05-31T22:28:34Z) - NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural
Radiance Fields [65.07940731309856]
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids.
In this paper, we consider a partially observable scenario known as fluid dynamics grounding.
We propose a differentiable two-stage network named NeuroFluid.
It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities.
arXiv Detail & Related papers (2022-03-03T15:13:29Z) - Complete CVDL Methodology for Investigating Hydrodynamic Instabilities [0.49873153106566565]
In fluid dynamics, one of the most important research fields is hydrodynamic instabilities and their evolution in different flow regimes.
Currently, three main methods are used for understanding such phenomenon - namely analytical models, experiments and simulations.
We claim and demonstrate that a major portion of this research effort could and should be analysed using recent breakthrough advancements in the field of Computer Vision with Deep Learning (CVDL, or Deep Computer-Vision)
Specifically, we focus in this research on one of the most representative instabilities, the Rayleigh-Taylor one, simulate its behaviour and create an open-sourced state-of-the
arXiv Detail & Related papers (2020-04-03T13:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.