論文の概要: Cluster Specific Representation Learning
- arxiv url: http://arxiv.org/abs/2412.03471v1
- Date: Wed, 04 Dec 2024 16:59:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:07:24.304376
- Title: Cluster Specific Representation Learning
- Title(参考訳): クラスタ固有表現学習
- Authors: Mahalakshmi Sabanayagam, Omar Al-Dabooni, Pascal Esser,
- Abstract要約: 広く応用されているにもかかわらず、善の表象の定義は確立されていない。
本稿では,データに固有のクラスタが存在する場合,各クラスタに固有の表現が必要であるという,ダウンストリームに依存しない定式化を提案する。
そこで我々は,クラスタ固有の表現とクラスタ割り当てを共同で学習するメタアルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 1.6727186769396276
- License:
- Abstract: Representation learning aims to extract meaningful lower-dimensional embeddings from data, known as representations. Despite its widespread application, there is no established definition of a ``good'' representation. Typically, the representation quality is evaluated based on its performance in downstream tasks such as clustering, de-noising, etc. However, this task-specific approach has a limitation where a representation that performs well for one task may not necessarily be effective for another. This highlights the need for a more agnostic formulation, which is the focus of our work. We propose a downstream-agnostic formulation: when inherent clusters exist in the data, the representations should be specific to each cluster. Under this idea, we develop a meta-algorithm that jointly learns cluster-specific representations and cluster assignments. As our approach is easy to integrate with any representation learning framework, we demonstrate its effectiveness in various setups, including Autoencoders, Variational Autoencoders, Contrastive learning models, and Restricted Boltzmann Machines. We qualitatively compare our cluster-specific embeddings to standard embeddings and downstream tasks such as de-noising and clustering. While our method slightly increases runtime and parameters compared to the standard model, the experiments clearly show that it extracts the inherent cluster structures in the data, resulting in improved performance in relevant applications.
- Abstract(参考訳): 表現学習は、表現として知られるデータから意味のある低次元の埋め込みを抽出することを目的としている。
広く応用されているにもかかわらず、「良い」表現の定義は確立されていない。
通常、表現品質はクラスタリングやデノイズングなどの下流タスクのパフォーマンスに基づいて評価されます。
しかし、このタスク固有のアプローチは、あるタスクに対してうまく機能する表現が必ずしも他のタスクに対して有効であるとは限らないという制限がある。
これは、我々の仕事の焦点である、より不可知的な定式化の必要性を強調します。
本稿では,データに固有のクラスタが存在する場合,各クラスタに固有の表現が必要であるという,ダウンストリームに依存しない定式化を提案する。
そこで我々は,クラスタ固有の表現とクラスタ割り当てを共同で学習するメタアルゴリズムを開発した。
提案手法は,任意の表現学習フレームワークとの統合が容易であるため,オートエンコーダや変分オートエンコーダ,コントラスト学習モデル,制限付きボルツマンマシンなど,さまざまな設定で有効性を示す。
クラスタ固有の埋め込みを、標準的な埋め込みや、デノイズやクラスタリングといった下流タスクと質的に比較します。
提案手法は,標準モデルに比べて実行時間とパラメータをわずかに増加させるが,実験により,データ中の固有のクラスタ構造を抽出し,関連するアプリケーションの性能を向上させることが明らかとなった。
関連論文リスト
- Stable Cluster Discrimination for Deep Clustering [7.175082696240088]
ディープクラスタリングは、インスタンスの表現(つまり、表現学習)を最適化し、固有のデータ分散を探索することができる。
結合された目的は、すべてのインスタンスが一様機能に崩壊する、自明な解決策を意味する。
本研究では,1段階クラスタリングにおいて,教師あり学習における一般的な識別タスクが不安定であることを示す。
新規な安定クラスタ識別(SeCu)タスクを提案し、それに応じて新しいハードネス対応クラスタリング基準を得ることができる。
論文 参考訳(メタデータ) (2023-11-24T06:43:26Z) - Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
一般化圏発見(GCD)は、最近提案されたオープンワールドタスクである。
クラスタリングの一貫性を促進するための協調学習ベースのフレームワークを提案する。
提案手法は,3つの総合的なベンチマークと3つのきめ細かい視覚認識データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-30T00:32:47Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Neighborhood Contrastive Learning for Novel Class Discovery [79.14767688903028]
我々は,クラスタリング性能に重要な識別表現を学習するために,Neighborhood Contrastive Learningという新しいフレームワークを構築した。
これらの2つの成分がクラスタリング性能に大きく寄与し、我々のモデルが最先端の手法よりも大きなマージンで優れていることを実験的に実証した。
論文 参考訳(メタデータ) (2021-06-20T17:34:55Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
表現学習とクラスタリングを1つのパイプラインに初めて統合するフレームワークを提案する。
提案フレームワークは,近年開発された生成モデルを用いて,本質的な特徴を学習する能力を活用している。
実験の結果,提案手法の性能は,最先端の手法よりも優れているか,少なくとも同等であることがわかった。
論文 参考訳(メタデータ) (2021-06-11T04:08:54Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Unsupervised Visual Representation Learning by Online Constrained
K-Means [44.38989920488318]
クラスタ識別は、教師なし表現学習の効果的な前提課題である。
オンラインtextbfConstrained textbfK-mtextbfeans (textbfCoKe) を用いたクラスタリングに基づく新しいプリテキストタスクを提案する。
当社のオンライン割当て方式は,グローバルな最適化に近づくための理論的保証を持っている。
論文 参考訳(メタデータ) (2021-05-24T20:38:32Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
データの局所構造とグローバル構造の両方を保存するためのグラフ学習フレームワークを提案する。
本手法は, サンプルの自己表現性を利用して, 局所構造を尊重するために, 大域的構造と適応的隣接アプローチを捉える。
我々のモデルは、ある条件下でのカーネルk平均法とk平均法の組合せと等価である。
論文 参考訳(メタデータ) (2020-08-31T08:41:20Z) - Simple and Scalable Sparse k-means Clustering via Feature Ranking [14.839931533868176]
直感的で実装が簡単で,最先端のアルゴリズムと競合する,スパースk平均クラスタリングのための新しいフレームワークを提案する。
本手法は,属性のサブセットのクラスタリングや部分的に観測されたデータ設定など,タスク固有のアルゴリズムに容易に一般化できる。
論文 参考訳(メタデータ) (2020-02-20T02:41:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。