Gaussian Splatting LK
- URL: http://arxiv.org/abs/2407.11309v1
- Date: Tue, 16 Jul 2024 01:50:43 GMT
- Title: Gaussian Splatting LK
- Authors: Liuyue Xie, Joel Julin, Koichiro Niinuma, Laszlo A. Jeni,
- Abstract summary: This paper investigates the potential of regularizing the native warp field within the dynamic Gaussian Splatting framework.
We show that we can exploit knowledge innate to the forward warp field network to derive an analytical velocity field.
This derived Lucas-Kanade style analytical regularization enables our method to achieve superior performance in reconstructing highly dynamic scenes.
- Score: 0.11249583407496218
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reconstructing dynamic 3D scenes from 2D images and generating diverse views over time presents a significant challenge due to the inherent complexity and temporal dynamics involved. While recent advancements in neural implicit models and dynamic Gaussian Splatting have shown promise, limitations persist, particularly in accurately capturing the underlying geometry of highly dynamic scenes. Some approaches address this by incorporating strong semantic and geometric priors through diffusion models. However, we explore a different avenue by investigating the potential of regularizing the native warp field within the dynamic Gaussian Splatting framework. Our method is grounded on the key intuition that an accurate warp field should produce continuous space-time motions. While enforcing the motion constraints on warp fields is non-trivial, we show that we can exploit knowledge innate to the forward warp field network to derive an analytical velocity field, then time integrate for scene flows to effectively constrain both the 2D motion and 3D positions of the Gaussians. This derived Lucas-Kanade style analytical regularization enables our method to achieve superior performance in reconstructing highly dynamic scenes, even under minimal camera movement, extending the boundaries of what existing dynamic Gaussian Splatting frameworks can achieve.
Related papers
- GAST: Sequential Gaussian Avatars with Hierarchical Spatio-temporal Context [7.6736633105043515]
3D human avatars, through the use of canonical radiance fields and per-frame observed warping, enable high-fidelity rendering and animating.
Existing methods, which rely on either spatial SMPL(-X) poses or temporal embeddings, respectively suffer from coarse quality or limited animation flexibility.
We propose GAST, a framework that unifies 3D human modeling with 3DGS by hierarchically integrating both spatial and temporal information.
arXiv Detail & Related papers (2024-11-25T04:05:19Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
We present DeSiRe-GS, a self-supervised gaussian splatting representation.
It enables effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios.
arXiv Detail & Related papers (2024-11-18T05:49:16Z) - Dynamic 3D Gaussian Fields for Urban Areas [60.64840836584623]
We present an efficient neural 3D scene representation for novel-view synthesis (NVS) in large-scale, dynamic urban areas.
We propose 4DGF, a neural scene representation that scales to large-scale dynamic urban areas.
arXiv Detail & Related papers (2024-06-05T12:07:39Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
We propose a novel motion-aware enhancement framework for dynamic scene reconstruction.
Specifically, we first establish a correspondence between 3D Gaussian movements and pixel-level flow.
For the prevalent deformation-based paradigm that presents a harder optimization problem, a transient-aware deformation auxiliary module is proposed.
arXiv Detail & Related papers (2024-03-18T03:46:26Z) - GauFRe: Gaussian Deformation Fields for Real-time Dynamic Novel View
Synthesis [17.572987038801475]
We propose a method for dynamic scene reconstruction using deformable 3D Gaussians.
The differentiable pipeline is optimized end-to-end with a self-supervised rendering.
Our method results are comparable to state-of-the-art neural radiance field methods.
arXiv Detail & Related papers (2023-12-18T18:59:03Z) - SC-GS: Sparse-Controlled Gaussian Splatting for Editable Dynamic Scenes [59.23385953161328]
Novel view synthesis for dynamic scenes is still a challenging problem in computer vision and graphics.
We propose a new representation that explicitly decomposes the motion and appearance of dynamic scenes into sparse control points and dense Gaussians.
Our method can enable user-controlled motion editing while retaining high-fidelity appearances.
arXiv Detail & Related papers (2023-12-04T11:57:14Z) - Periodic Vibration Gaussian: Dynamic Urban Scene Reconstruction and Real-time Rendering [36.111845416439095]
We present a unified representation model, called Periodic Vibration Gaussian (PVG)
PVG builds upon the efficient 3D Gaussian splatting technique, originally designed for static scene representation.
PVG exhibits 900-fold acceleration in rendering over the best alternative.
arXiv Detail & Related papers (2023-11-30T13:53:50Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRF is a simple yet powerful approach for learning spatial-temporal representations of dynamic driving scenes.
It simultaneously captures scene geometry, appearance, motion, and semantics via self-bootstrapping.
Our method achieves state-of-the-art performance in sensor simulation.
arXiv Detail & Related papers (2023-11-03T17:59:55Z) - Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction [29.83056271799794]
Implicit neural representation has paved the way for new approaches to dynamic scene reconstruction and rendering.
We propose a deformable 3D Gaussians Splatting method that reconstructs scenes using 3D Gaussians and learns them in canonical space.
Through a differential Gaussianizer, the deformable 3D Gaussians not only achieve higher rendering quality but also real-time rendering speed.
arXiv Detail & Related papers (2023-09-22T16:04:02Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
We present a method that simultaneously addresses the tasks of dynamic scene novel-view synthesis and six degree-of-freedom (6-DOF) tracking of all dense scene elements.
We follow an analysis-by-synthesis framework, inspired by recent work that models scenes as a collection of 3D Gaussians.
We demonstrate a large number of downstream applications enabled by our representation, including first-person view synthesis, dynamic compositional scene synthesis, and 4D video editing.
arXiv Detail & Related papers (2023-08-18T17:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.