TRENDy: Temporal Regression of Effective Non-linear Dynamics
- URL: http://arxiv.org/abs/2412.03496v1
- Date: Wed, 04 Dec 2024 17:36:47 GMT
- Title: TRENDy: Temporal Regression of Effective Non-linear Dynamics
- Authors: Matthew Ricci, Guy Pelc, Zoe Piran, Noa Moriel, Mor Nitzan,
- Abstract summary: TRENDy is an equation-free approach to low-dimensional spatial learning.
We train TRENDy to predict the effective dynamics of synthetic and real data representing dynamics from across the physical and life sciences.
We show how our framework can automatically locate both Turing and Hopf bifurcations in unseen regions of space.
- Score: 4.264200809234798
- License:
- Abstract: Spatiotemporal dynamics pervade the natural sciences, from the morphogen dynamics underlying patterning in animal pigmentation to the protein waves controlling cell division. A central challenge lies in understanding how controllable parameters induce qualitative changes in system behavior called bifurcations. This endeavor is made particularly difficult in realistic settings where governing partial differential equations (PDEs) are unknown and data is limited and noisy. To address this challenge, we propose TRENDy (Temporal Regression of Effective Nonlinear Dynamics), an equation-free approach to learning low-dimensional, predictive models of spatiotemporal dynamics. Following classical work in spatial coarse-graining, TRENDy first maps input data to a low-dimensional space of effective dynamics via a cascade of multiscale filtering operations. Our key insight is the recognition that these effective dynamics can be fit by a neural ordinary differential equation (NODE) having the same parameter space as the input PDE. The preceding filtering operations strongly regularize the phase space of the NODE, making TRENDy significantly more robust to noise compared to existing methods. We train TRENDy to predict the effective dynamics of synthetic and real data representing dynamics from across the physical and life sciences. We then demonstrate how our framework can automatically locate both Turing and Hopf bifurcations in unseen regions of parameter space. We finally apply our method to the analysis of spatial patterning of the ocellated lizard through development. We found that TRENDy's effective state not only accurately predicts spatial changes over time but also identifies distinct pattern features unique to different anatomical regions, highlighting the potential influence of surface geometry on reaction-diffusion mechanisms and their role in driving spatially varying pattern dynamics.
Related papers
- Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
In this paper, we introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework.
The network is designed to conform to the general symmetry conservation law via symmetry where conservative and non-conservative information passes over a multiscale space by a latent temporal marching strategy.
Results demonstrate that CiGNN exhibits remarkable baseline accuracy and generalizability, and is readily applicable to learning for prediction of varioustemporal dynamics.
arXiv Detail & Related papers (2024-12-30T13:55:59Z) - Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems [2.170477444239546]
We develop an approach that balances these two objectives: the Gaussian Process Switching Linear Dynamical System (gpSLDS)
Our method builds on previous work modeling the latent state evolution via a differential equation whose nonlinear dynamics are described by a Gaussian process (GP-SDEs)
Our approach resolves key limitations of the rSLDS such as artifactual oscillations in dynamics near discrete state boundaries, while also providing posterior uncertainty estimates of the dynamics.
arXiv Detail & Related papers (2024-07-19T15:32:15Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Expressive architectures enhance interpretability of dynamics-based
neural population models [2.294014185517203]
We evaluate the performance of sequential autoencoders (SAEs) in recovering latent chaotic attractors from simulated neural datasets.
We found that SAEs with widely-used recurrent neural network (RNN)-based dynamics were unable to infer accurate firing rates at the true latent state dimensionality.
arXiv Detail & Related papers (2022-12-07T16:44:26Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
We introduce Discovery of Dynamical Systems via Moving Horizon Optimization (DySMHO), a scalable machine learning framework.
DySMHO sequentially learns the underlying governing equations from a large dictionary of basis functions.
Canonical nonlinear dynamical system examples are used to demonstrate that DySMHO can accurately recover the governing laws.
arXiv Detail & Related papers (2021-07-30T20:35:03Z) - The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations,
and Anomalous Diffusion [29.489737359897312]
We study the limiting dynamics of deep neural networks trained with gradient descent (SGD)
We show that the key ingredient driving these dynamics is not the original training loss, but rather the combination of a modified loss, which implicitly regularizes the velocity and probability currents, which cause oscillations in phase space.
arXiv Detail & Related papers (2021-07-19T20:18:57Z) - Data-driven reduced order modeling of environmental hydrodynamics using
deep autoencoders and neural ODEs [3.4527210650730393]
We investigate employing deep autoencoders for discovering the reduced basis representation.
Test problems we consider include incompressible flow around a cylinder as well as a real-world application of shallow water hydrodynamics in an estuarine system.
arXiv Detail & Related papers (2021-07-06T17:45:37Z) - Stochastic embeddings of dynamical phenomena through variational
autoencoders [1.7205106391379026]
We use a recognition network to increase the observed space dimensionality during the reconstruction of the phase space.
Our validation shows that this approach not only recovers a state space that resembles the original one, but it is also able to synthetize new time series.
arXiv Detail & Related papers (2020-10-13T10:10:24Z) - Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable
Dynamical Systems [74.80320120264459]
We present an approach to learn such motions from a limited number of human demonstrations.
The complex motions are encoded as rollouts of a stable dynamical system.
The efficacy of this approach is demonstrated through validation on an established benchmark as well demonstrations collected on a real-world robotic system.
arXiv Detail & Related papers (2020-05-27T03:51:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.