Data-driven reduced order modeling of environmental hydrodynamics using
deep autoencoders and neural ODEs
- URL: http://arxiv.org/abs/2107.02784v1
- Date: Tue, 6 Jul 2021 17:45:37 GMT
- Title: Data-driven reduced order modeling of environmental hydrodynamics using
deep autoencoders and neural ODEs
- Authors: Sourav Dutta, Peter Rivera-Casillas, Orie M. Cecil, Matthew W.
Farthing, Emma Perracchione, Mario Putti
- Abstract summary: We investigate employing deep autoencoders for discovering the reduced basis representation.
Test problems we consider include incompressible flow around a cylinder as well as a real-world application of shallow water hydrodynamics in an estuarine system.
- Score: 3.4527210650730393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model reduction for fluid flow simulation continues to be of great interest
across a number of scientific and engineering fields. In a previous work
[arXiv:2104.13962], we explored the use of Neural Ordinary Differential
Equations (NODE) as a non-intrusive method for propagating the latent-space
dynamics in reduced order models. Here, we investigate employing deep
autoencoders for discovering the reduced basis representation, the dynamics of
which are then approximated by NODE. The ability of deep autoencoders to
represent the latent-space is compared to the traditional proper orthogonal
decomposition (POD) approach, again in conjunction with NODE for capturing the
dynamics. Additionally, we compare their behavior with two classical
non-intrusive methods based on POD and radial basis function interpolation as
well as dynamic mode decomposition. The test problems we consider include
incompressible flow around a cylinder as well as a real-world application of
shallow water hydrodynamics in an estuarine system. Our findings indicate that
deep autoencoders can leverage nonlinear manifold learning to achieve a highly
efficient compression of spatial information and define a latent-space that
appears to be more suitable for capturing the temporal dynamics through the
NODE framework.
Related papers
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - gLaSDI: Parametric Physics-informed Greedy Latent Space Dynamics
Identification [0.5249805590164902]
A physics-informed greedy Latent Space Dynamics Identification (gLa) method is proposed for accurate, efficient, and robust data-driven reduced-order modeling.
An interactive training algorithm is adopted for the autoencoder and local DI models, which enables identification of simple latent-space dynamics.
The effectiveness of the proposed framework is demonstrated by modeling various nonlinear dynamical problems.
arXiv Detail & Related papers (2022-04-26T00:15:46Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - Learning Low-Dimensional Quadratic-Embeddings of High-Fidelity Nonlinear
Dynamics using Deep Learning [9.36739413306697]
Learning dynamical models from data plays a vital role in engineering design, optimization, and predictions.
We use deep learning to identify low-dimensional embeddings for high-fidelity dynamical systems.
arXiv Detail & Related papers (2021-11-25T10:09:00Z) - Accelerating Neural ODEs Using Model Order Reduction [0.0]
We show that mathematical model order reduction methods can be used for compressing and accelerating Neural ODEs.
We implement our novel compression method by developing Neural ODEs that integrate the necessary subspace-projection and operations as layers of the neural network.
arXiv Detail & Related papers (2021-05-28T19:27:09Z) - A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media [1.5791732557395552]
We describe a gradient-based deep neural network (GDNN) constrained by the physics related to multiphase flow in porous media.
We demonstrate that GDNN can effectively predict the nonlinear patterns of subsurface responses.
arXiv Detail & Related papers (2021-04-30T02:14:00Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Neural Ordinary Differential Equations for Data-Driven Reduced Order
Modeling of Environmental Hydrodynamics [4.547988283172179]
We explore the use of Neural Ordinary Differential Equations for fluid flow simulation.
Test problems we consider include incompressible flow around a cylinder and real-world applications of shallow water hydrodynamics in riverine and estuarine systems.
Our findings indicate that Neural ODEs provide an elegant framework for stable and accurate evolution of latent-space dynamics with a promising potential of extrapolatory predictions.
arXiv Detail & Related papers (2021-04-22T19:20:47Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.