OKG: On-the-Fly Keyword Generation in Sponsored Search Advertising
- URL: http://arxiv.org/abs/2412.03577v1
- Date: Mon, 18 Nov 2024 03:02:06 GMT
- Title: OKG: On-the-Fly Keyword Generation in Sponsored Search Advertising
- Authors: Zhao Wang, Briti Gangopadhyay, Mengjie Zhao, Shingo Takamatsu,
- Abstract summary: On-the-fly Keyword Generation (OKG) is an agent-based method that monitors changes and adapts keyword generation in real time.
OKG significantly improves adaptability and responsiveness compared to traditional methods.
- Score: 11.100360578510223
- License:
- Abstract: Current keyword decision-making in sponsored search advertising relies on large, static datasets, limiting the ability to automatically set up keywords and adapt to real-time KPI metrics and product updates that are essential for effective advertising. In this paper, we propose On-the-fly Keyword Generation (OKG), an LLM agent-based method that dynamically monitors KPI changes and adapts keyword generation in real time, aligning with strategies recommended by advertising platforms. Additionally, we introduce the first publicly accessible dataset containing real keyword data along with its KPIs across diverse domains, providing a valuable resource for future research. Experimental results show that OKG significantly improves keyword adaptability and responsiveness compared to traditional methods. The code for OKG and the dataset are available at https://github.com/sony/okg.
Related papers
- Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
We propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL)
GLSCL capitalizes on latent shared semantics across modalities for text-video retrieval.
Our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost.
arXiv Detail & Related papers (2024-05-21T11:59:36Z) - Enhancing Phrase Representation by Information Bottleneck Guided Text Diffusion Process for Keyphrase Extraction [9.307602861891926]
Keyphrase extraction is an important task in Natural Language Processing.
In this study, we propose Diff-KPE to guide the text diffusion process for generating enhanced keyphrase representations.
Experiments show that Diff-KPE outperforms existing KPE methods on a large open domain keyphrase extraction benchmark, OpenKP, and a scientific domain dataset, KP20K.
arXiv Detail & Related papers (2023-08-17T02:26:30Z) - Efficient Image-Text Retrieval via Keyword-Guided Pre-Screening [53.1711708318581]
Current image-text retrieval methods suffer from $N$-related time complexity.
This paper presents a simple and effective keyword-guided pre-screening framework for the image-text retrieval.
arXiv Detail & Related papers (2023-03-14T09:36:42Z) - Pre-trained Language Models for Keyphrase Generation: A Thorough
Empirical Study [76.52997424694767]
We present an in-depth empirical study of keyphrase extraction and keyphrase generation using pre-trained language models.
We show that PLMs have competitive high-resource performance and state-of-the-art low-resource performance.
Further results show that in-domain BERT-like PLMs can be used to build strong and data-efficient keyphrase generation models.
arXiv Detail & Related papers (2022-12-20T13:20:21Z) - Keyword Targeting Optimization in Sponsored Search Advertising:
Combining Selection and Matching [0.0]
An optimal keyword targeting strategy guarantees reaching the right population effectively.
This paper aims to address the keyword targeting problem, which is a challenging task because of the incomplete information of historical advertising performance indices.
Experimental results show that, (a) BB-KSM outperforms seven baselines in terms of profit; (b) BB-KSM shows its superiority as the budget increases.
arXiv Detail & Related papers (2022-10-19T03:37:32Z) - DetCLIP: Dictionary-Enriched Visual-Concept Paralleled Pre-training for
Open-world Detection [118.36746273425354]
This paper presents a paralleled visual-concept pre-training method for open-world detection by resorting to knowledge enrichment from a designed concept dictionary.
By enriching the concepts with their descriptions, we explicitly build the relationships among various concepts to facilitate the open-domain learning.
The proposed framework demonstrates strong zero-shot detection performances, e.g., on the LVIS dataset, our DetCLIP-T outperforms GLIP-T by 9.9% mAP and obtains a 13.5% improvement on rare categories.
arXiv Detail & Related papers (2022-09-20T02:01:01Z) - Keyword Optimization in Sponsored Search Advertising: A Multi-Level
Computational Framework [20.22050119811848]
Keywords serve as an essential bridge linking advertisers, search users and search engines.
This paper proposes a multi-level and closed-form computational framework for keyword optimization.
arXiv Detail & Related papers (2022-02-28T02:03:14Z) - Deep Keyphrase Completion [59.0413813332449]
Keyphrase provides accurate information of document content that is highly compact, concise, full of meanings, and widely used for discourse comprehension, organization, and text retrieval.
We propose textitkeyphrase completion (KPC) to generate more keyphrases for document (e.g. scientific publication) taking advantage of document content along with a very limited number of known keyphrases.
We name it textitdeep keyphrase completion (DKPC) since it attempts to capture the deep semantic meaning of the document content together with known keyphrases via a deep learning framework
arXiv Detail & Related papers (2021-10-29T07:15:35Z) - Keyphrase Extraction with Dynamic Graph Convolutional Networks and
Diversified Inference [50.768682650658384]
Keyphrase extraction (KE) aims to summarize a set of phrases that accurately express a concept or a topic covered in a given document.
Recent Sequence-to-Sequence (Seq2Seq) based generative framework is widely used in KE task, and it has obtained competitive performance on various benchmarks.
In this paper, we propose to adopt the Dynamic Graph Convolutional Networks (DGCN) to solve the above two problems simultaneously.
arXiv Detail & Related papers (2020-10-24T08:11:23Z) - Capturing Global Informativeness in Open Domain Keyphrase Extraction [40.57116173502994]
Open-domain KeyPhrase Extraction (KPE) aims to extract keyphrases from documents without domain or quality restrictions.
This paper presents JointKPE, an open-domain KPE architecture built on pre-trained language models.
JointKPE learns to rank keyphrases by estimating their informativeness in the entire document and is jointly trained on the keyphrase chunking task.
arXiv Detail & Related papers (2020-04-28T16:34:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.