Advanced Risk Prediction and Stability Assessment of Banks Using Time Series Transformer Models
- URL: http://arxiv.org/abs/2412.03606v1
- Date: Wed, 04 Dec 2024 08:15:27 GMT
- Title: Advanced Risk Prediction and Stability Assessment of Banks Using Time Series Transformer Models
- Authors: Wenying Sun, Zhen Xu, Wenqing Zhang, Kunyuan Ma, You Wu, Mengfang Sun,
- Abstract summary: This paper proposes a prediction framework based on the Time Series Transformer model.
We compare the model with LSTM, GRU, CNN, TCN and RNN-Transformer models.
The experimental results show that the Time Series Transformer model outperforms other models in both mean square error (MSE) and mean absolute error (MAE) evaluation indicators.
- Score: 10.79035001851989
- License:
- Abstract: This paper aims to study the prediction of the bank stability index based on the Time Series Transformer model. The bank stability index is an important indicator to measure the health status and risk resistance of financial institutions. Traditional prediction methods are difficult to adapt to complex market changes because they rely on single-dimensional macroeconomic data. This paper proposes a prediction framework based on the Time Series Transformer, which uses the self-attention mechanism of the model to capture the complex temporal dependencies and nonlinear relationships in financial data. Through experiments, we compare the model with LSTM, GRU, CNN, TCN and RNN-Transformer models. The experimental results show that the Time Series Transformer model outperforms other models in both mean square error (MSE) and mean absolute error (MAE) evaluation indicators, showing strong prediction ability. This shows that the Time Series Transformer model can better handle multidimensional time series data in bank stability prediction, providing new technical approaches and solutions for financial risk management.
Related papers
- A Deep Learning Framework Integrating CNN and BiLSTM for Financial Systemic Risk Analysis and Prediction [17.6825558707504]
This study proposes a deep learning model based on the combination of convolutional neural network (CNN) and bidirectional long short-term memory network (BiLSTM)
The model first uses CNN to extract local patterns of multidimensional features of financial markets, and then models the bidirectional dependency of time series through BiLSTM.
The results show that the model is significantly superior to traditional single models in terms of accuracy, recall, and F1 score.
arXiv Detail & Related papers (2025-02-07T07:57:11Z) - BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets [0.0]
We present a new, hybrid Deep Learning model that captures and forecasting market volatility more accurately than either class of models are capable of on their own.
When compared to other time series models, GINN showed superior out-of-sample prediction performance in terms of the Coefficient of Determination ($R2$), Mean Squared Error (MSE), and Mean Absolute Error (MAE)
arXiv Detail & Related papers (2024-09-30T23:53:54Z) - Rating Multi-Modal Time-Series Forecasting Models (MM-TSFM) for Robustness Through a Causal Lens [10.103561529332184]
We focus on multi-modal time-series forecasting, where imprecision due to noisy or incorrect data can lead to erroneous predictions.
We introduce a rating methodology to assess the robustness of Multi-Modal Time-Series Forecasting Models.
arXiv Detail & Related papers (2024-06-12T17:39:16Z) - Financial Time-Series Forecasting: Towards Synergizing Performance And
Interpretability Within a Hybrid Machine Learning Approach [2.0213537170294793]
This paper propose a comparative study on hybrid machine learning algorithms and leverage on enhancing model interpretability.
For the interpretability, we carry out a systematic overview on the preprocessing techniques of time-series statistics, including decomposition, auto-correlational function, exponential triple forecasting, which aim to excavate latent relations and complex patterns appeared in the financial time-series forecasting.
arXiv Detail & Related papers (2023-12-31T16:38:32Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
Deep learning models have led to significant performance improvements in many problems coming from different domains, including prediction problems of financial time-series data.
The Temporal Attention-Augmented Bilinear network was recently proposed as an efficient and high-performing model for Limit Order Book time-series forecasting.
In this paper, we propose a low-rank tensor approximation of the model to further reduce the number of trainable parameters and increase its speed.
arXiv Detail & Related papers (2021-07-05T10:15:23Z) - Deep Stochastic Volatility Model [3.3970049571884204]
We propose a deep volatility model (DSVM) based on the framework of deep latent variable models.
It uses flexible deep learning models to automatically detect the dependence of the future volatility on past returns.
In real data analysis, the DSVM outperforms several popular alternative volatility models.
arXiv Detail & Related papers (2021-02-25T03:25:33Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.