Deep Stochastic Volatility Model
- URL: http://arxiv.org/abs/2102.12658v1
- Date: Thu, 25 Feb 2021 03:25:33 GMT
- Title: Deep Stochastic Volatility Model
- Authors: Xiuqin Xu, Ying Chen
- Abstract summary: We propose a deep volatility model (DSVM) based on the framework of deep latent variable models.
It uses flexible deep learning models to automatically detect the dependence of the future volatility on past returns.
In real data analysis, the DSVM outperforms several popular alternative volatility models.
- Score: 3.3970049571884204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Volatility for financial assets returns can be used to gauge the risk for
financial market. We propose a deep stochastic volatility model (DSVM) based on
the framework of deep latent variable models. It uses flexible deep learning
models to automatically detect the dependence of the future volatility on past
returns, past volatilities and the stochastic noise, and thus provides a
flexible volatility model without the need to manually select features. We
develop a scalable inference and learning algorithm based on variational
inference. In real data analysis, the DSVM outperforms several popular
alternative volatility models. In addition, the predicted volatility of the
DSVM provides a more reliable risk measure that can better reflex the risk in
the financial market, reaching more quickly to a higher level when the market
becomes more risky and to a lower level when the market is more stable,
compared with the commonly used GARCH type model with a huge data set on the
U.S. stock market.
Related papers
- UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation [93.38604803625294]
We present UncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)
We use Signal-to-Noise Ratio (SNR)-based span uncertainty to estimate similarity between text chunks.
UncertaintyRAG outperforms baselines by 2.03% on LLaMA-2-7B, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-10-03T17:39:38Z) - The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models [0.0]
This study explores four methods to improve the accuracy of volatility forecasts for the S&P 500.
We find that machine learning approaches, particularly the hybrid LSTM models, significantly outperform the traditional GARCH model.
The results of this study offer valuable insights for achieving more accurate volatility predictions.
arXiv Detail & Related papers (2024-07-23T18:28:16Z) - RVRAE: A Dynamic Factor Model Based on Variational Recurrent Autoencoder
for Stock Returns Prediction [5.281288833470249]
RVRAE is a probabilistic approach that addresses the temporal dependencies and noise in market data.
It is adept at risk modeling in volatile stock markets, estimating variances from latent space distributions while also predicting returns.
arXiv Detail & Related papers (2024-03-04T21:48:32Z) - Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks [3.7608255115473592]
This paper introduces Stockformer, a price-volume factor stock selection model that integrates wavelet transformation and a multitask self-attention network.
Stockformer decomposes stock returns into high and low frequencies, meticulously capturing long-term market trends and abrupt events.
Experimental results show that Stockformer outperforms existing advanced methods on multiple real stock market datasets.
arXiv Detail & Related papers (2023-11-23T04:33:47Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Regime-based Implied Stochastic Volatility Model for Crypto Option
Pricing [0.0]
Existing methodologies fail to cope with the volatile nature of the emerging Digital Assets (DAs)
We leverage recent advances in market regime (MR) clustering with the Implied volatility Model (ISVM)
ISVM can incorporate investor expectations in each of the sentiment-driven periods by using implied volatility (IV) data.
We demonstrate that MR-ISVM contributes to overcome the burden of complex adaption to jumps in higher order characteristics of option pricing models.
arXiv Detail & Related papers (2022-08-15T15:31:42Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Predicting Risk-adjusted Returns using an Asset Independent
Regime-switching Model [0.0]
We construct a regime-switching model independent of asset classes for risk-adjusted return predictions based on hidden Markov models.
An investigation of our metric for risk-adjusted return predictions is conducted by analyzing daily financial market changes for almost twenty years.
arXiv Detail & Related papers (2021-07-07T10:23:59Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.