Personalizing Multimodal Large Language Models for Image Captioning: An Experimental Analysis
- URL: http://arxiv.org/abs/2412.03665v1
- Date: Wed, 04 Dec 2024 19:01:06 GMT
- Title: Personalizing Multimodal Large Language Models for Image Captioning: An Experimental Analysis
- Authors: Davide Bucciarelli, Nicholas Moratelli, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara,
- Abstract summary: This paper investigates whether Multimodal LLMs can supplant traditional image captioning networks by evaluating their performance on various image description benchmarks.
We explore both the zero-shot capabilities of these models and their adaptability to different semantic domains through fine-tuning methods.
Our results demonstrate that while Multimodal LLMs achieve impressive zero-shot performance, fine-tuning for specific domains while maintaining their generalization capabilities intact remains challenging.
- Score: 44.008094698200026
- License:
- Abstract: The task of image captioning demands an algorithm to generate natural language descriptions of visual inputs. Recent advancements have seen a convergence between image captioning research and the development of Large Language Models (LLMs) and Multimodal LLMs -- like GPT-4V and Gemini -- which extend the capabilities of text-only LLMs to multiple modalities. This paper investigates whether Multimodal LLMs can supplant traditional image captioning networks by evaluating their performance on various image description benchmarks. We explore both the zero-shot capabilities of these models and their adaptability to different semantic domains through fine-tuning methods, including prompt learning, prefix tuning, and low-rank adaptation. Our results demonstrate that while Multimodal LLMs achieve impressive zero-shot performance, fine-tuning for specific domains while maintaining their generalization capabilities intact remains challenging. We discuss the implications of these findings for future research in image captioning and the development of more adaptable Multimodal LLMs.
Related papers
- Order Matters: Exploring Order Sensitivity in Multimodal Large Language Models [15.622219099903067]
We find that changing the order of multimodal input can cause the model's performance to fluctuate between advanced performance and random guessing.
This phenomenon exists in both single-modality (text-only or image-only) and mixed-modality (image-text-pair) contexts.
We propose a new metric, Position-Invariant Accuracy (PIA), to address order bias in MLLM evaluation.
arXiv Detail & Related papers (2024-10-22T13:05:11Z) - MaVEn: An Effective Multi-granularity Hybrid Visual Encoding Framework for Multimodal Large Language Model [49.931663904599205]
MaVEn is an innovative framework designed to enhance the capabilities of Multimodal Large Language Models (MLLMs) in multi-image reasoning.
We show that MaVEn significantly enhances MLLMs' understanding in complex multi-image scenarios, while also improving performance in single-image contexts.
arXiv Detail & Related papers (2024-08-22T11:57:16Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
We propose bfAnyRef, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references.
Our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
arXiv Detail & Related papers (2024-03-05T13:45:46Z) - Browse and Concentrate: Comprehending Multimodal Content via prior-LLM Context Fusion [70.9767518332692]
Multimodal Large Language Models (MLLMs) that incorporate LLMs with pre-trained vision models have recently demonstrated impressive performance across diverse vision-language tasks.
However, they fall short to comprehend context involving multiple images.
We propose a two phase paradigm, browse-and-concentrate, to enable in-depth multimodal context fusion.
arXiv Detail & Related papers (2024-02-19T14:59:07Z) - On the Performance of Multimodal Language Models [4.677125897916577]
This study conducts a comparative analysis of different multimodal instruction tuning approaches.
We reveal key insights for guiding architectural choices when incorporating multimodal capabilities into large language models.
arXiv Detail & Related papers (2023-10-04T23:33:36Z) - Position-Enhanced Visual Instruction Tuning for Multimodal Large
Language Models [50.07056960586183]
We propose Position-enhanced Visual Instruction Tuning (PVIT) to extend the functionality of Multimodal Large Language Models (MLLMs)
This integration promotes a more detailed comprehension of images for the MLLM.
We present both quantitative experiments and qualitative analysis that demonstrate the superiority of the proposed model.
arXiv Detail & Related papers (2023-08-25T15:33:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.