Securing RC Based P2P Networks: A Blockchain-based Access Control Framework utilizing Ethereum Smart Contracts for IoT and Web 3.0
- URL: http://arxiv.org/abs/2412.03709v1
- Date: Wed, 04 Dec 2024 20:56:52 GMT
- Title: Securing RC Based P2P Networks: A Blockchain-based Access Control Framework utilizing Ethereum Smart Contracts for IoT and Web 3.0
- Authors: Saurav Ghosh, Reshmi Mitra, Indranil Roy, Bidyut Gupta,
- Abstract summary: This paper presents a blockchain-based access control framework that uses smart contracts to address these challenges.
Our framework aims to close the gaps in existing access control systems by providing flexible, transparent, and decentralized security solutions.
- Score: 0.12499537119440242
- License:
- Abstract: Ensuring security for highly dynamic peer-to-peer (P2P) networks has always been a challenge, especially for services like online transactions and smart devices. These networks experience high churn rates, making it difficult to maintain appropriate access control. Traditional systems, particularly Role-Based Access Control (RBAC), often fail to meet the needs of a P2P environment. This paper presents a blockchain-based access control framework that uses Ethereum smart contracts to address these challenges. Our framework aims to close the gaps in existing access control systems by providing flexible, transparent, and decentralized security solutions. The proposed framework includes access control contracts (ACC) that manage access based on static and dynamic policies, a Judge Contract (JC) to handle misbehavior, and a Register Contract (RC) to record and manage the interactions between ACCs and JC. The security model combines impact and severity-based threat assessments using the CIA (Confidentiality, Integrity, Availability) and STRIDE principles, ensuring responses are tailored to different threat levels. This system not only stabilizes the fundamental issues of peer membership but also offers a scalable solution, particularly valuable in areas such as the Internet of Things (IoT) and Web 3.0 technologies.
Related papers
- 2FA: Navigating the Challenges and Solutions for Inclusive Access [55.2480439325792]
Two-Factor Authentication (2FA) has emerged as a critical solution to protect online activities.
This paper examines the intricacies of deploying 2FA in a way that is secure and accessible to all users.
An analysis was conducted to examine the implementation and availability of various 2FA methods across popular online platforms.
arXiv Detail & Related papers (2025-02-17T12:23:53Z) - Balancing Confidentiality and Transparency for Blockchain-based Process-Aware Information Systems [46.404531555921906]
We propose an architecture for blockchain-based PAISs aimed at preserving both confidentiality and transparency.
Smart contracts enact, enforce and store public interactions, while attribute-based encryption techniques are adopted to specify access grants to confidential information.
arXiv Detail & Related papers (2024-12-07T20:18:36Z) - Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - FACOS: Enabling Privacy Protection Through Fine-Grained Access Control with On-chain and Off-chain System [11.901770945295391]
We propose a permissioned blockchain-based privacy-preserving fine-grained access control on-chain and off-chain system, namely FACOS.
Compared to similar work that only stores encrypted data in centralized or non-fault-tolerant IPFS systems, we enhanced off-chain data storage security and robustness.
arXiv Detail & Related papers (2024-06-06T02:23:12Z) - Collaborative Access Control for IoT -- A Blockchain Approach [0.0]
The Internet of Things (IoT) necessitates robust access control mechanisms to secure a vast array of interconnected devices.
We identify the problems in such solutions and adopt the blockchain based decentralized access control approach.
Our experiments demonstrate the efficacy of our system, showing that the shortcut mechanism can reduce access time by approximately 43%.
arXiv Detail & Related papers (2024-05-24T17:46:53Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - Deep Learning meets Blockchain for Automated and Secure Access Control [0.0]
We propose DLACB, a Deep Learning Based Access Control Using, as a solution to decentralized access control.
DLACB uses blockchain to provide transparency, traceability, and reliability in various domains such as medicine, finance, and government.
As all data is recorded on the blockchain, we have the capability to identify malicious activities.
arXiv Detail & Related papers (2023-11-10T18:50:56Z) - Sparsity-Aware Intelligent Massive Random Access Control in Open RAN: A
Reinforcement Learning Based Approach [61.74489383629319]
Massive random access of devices in the emerging Open Radio Access Network (O-RAN) brings great challenge to the access control and management.
reinforcement-learning (RL)-assisted scheme of closed-loop access control is proposed to preserve sparsity of access requests.
Deep-RL-assisted SAUD is proposed to resolve highly complex environments with continuous and high-dimensional state and action spaces.
arXiv Detail & Related papers (2023-03-05T12:25:49Z) - A lightweight blockchain-based access control scheme for integrated edge
computing in the internet of things [4.308257382729074]
We propose an attribute-based encryption and access control scheme (ABE-ACS) for the Edge-Iot network.
For the problems of high resource consumption and difficult deployment of existing blockchain platforms, we design a lightweight blockchain (LBC)
Six smart contracts are designed to realize the ABAC and penalty mechanism, with which ABE is outsourced to edge nodes for privacy and integrity.
arXiv Detail & Related papers (2021-11-12T02:56:09Z) - Scalable Role-based Access Control Using The EOS Blockchain [0.0]
Role-based access control (RBAC) policies represent the rights of subjects in terms of roles to access resources.
This research proposes a scalable, flexible and auditable RBAC system using the EOS blockchain platform.
arXiv Detail & Related papers (2020-07-04T18:45:14Z) - Regulation conform DLT-operable payment adapter based on trustless -
justified trust combined generalized state channels [77.34726150561087]
Economy of Things (EoT) will be based on software agents running on peer-to-peer trustless networks.
We give an overview of current solutions that differ in their fundamental values and technological possibilities.
We propose to combine the strengths of the crypto based, decentralized trustless elements with established and well regulated means of payment.
arXiv Detail & Related papers (2020-07-03T10:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.