Blockchain-empowered Federated Learning: Benefits, Challenges, and Solutions
- URL: http://arxiv.org/abs/2403.00873v2
- Date: Fri, 5 Jul 2024 09:36:26 GMT
- Title: Blockchain-empowered Federated Learning: Benefits, Challenges, and Solutions
- Authors: Zeju Cai, Jianguo Chen, Yuting Fan, Zibin Zheng, Keqin Li,
- Abstract summary: Federated learning (FL) is a distributed machine learning approach that protects user data privacy by training models locally on clients and aggregating them on a parameter server.
While effective at preserving privacy, FL systems face limitations such as single points of failure, lack of incentives, and inadequate security.
To address these challenges, blockchain technology is integrated into FL systems to provide stronger security, fairness, and scalability.
- Score: 31.18229828293164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a distributed machine learning approach that protects user data privacy by training models locally on clients and aggregating them on a parameter server. While effective at preserving privacy, FL systems face limitations such as single points of failure, lack of incentives, and inadequate security. To address these challenges, blockchain technology is integrated into FL systems to provide stronger security, fairness, and scalability. However, blockchain-empowered FL (BC-FL) systems introduce additional demands on network, computing, and storage resources. This survey provides a comprehensive review of recent research on BC-FL systems, analyzing the benefits and challenges associated with blockchain integration. We explore why blockchain is applicable to FL, how it can be implemented, and the challenges and existing solutions for its integration. Additionally, we offer insights on future research directions for the BC-FL system.
Related papers
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Privacy-Preserving in Blockchain-based Federated Learning Systems [14.658288580398974]
Federated Learning (FL) has recently arisen as a revolutionary approach to collaborative training Machine Learning models.
Security, and privacy concerns arise due to the distributed nature of this solution.
This paper explores the research efforts carried out by the scientific community to define privacy solutions.
arXiv Detail & Related papers (2024-01-07T17:23:55Z) - Bayesian Federated Learning: A Survey [54.40136267717288]
Federated learning (FL) demonstrates its advantages in integrating distributed infrastructure, communication, computing and learning in a privacy-preserving manner.
The robustness and capabilities of existing FL methods are challenged by limited and dynamic data and conditions.
BFL has emerged as a promising approach to address these issues.
arXiv Detail & Related papers (2023-04-26T03:41:17Z) - A Survey on Secure and Private Federated Learning Using Blockchain:
Theory and Application in Resource-constrained Computing [0.8029049649310213]
Federated Learning (FL) has gained widespread popularity in recent years due to the fast booming of advanced machine learning and artificial intelligence.
The performance of the FL process can be threatened and reached a bottleneck due to the growing cyber threats and privacy violation techniques.
To expedite the proliferation of FL process, the integration of blockchain for FL environments has drawn prolific attention from the people of academia and industry.
arXiv Detail & Related papers (2023-03-24T00:40:08Z) - Fairness, Integrity, and Privacy in a Scalable Blockchain-based
Federated Learning System [0.0]
Federated machine learning (FL) allows to collectively train models on sensitive data as only the clients' models and not their training data need to be shared.
Despite the attention that research on FL has drawn, the concept still lacks broad adoption in practice.
This paper suggests a FL system that incorporates blockchain technology, local differential privacy, and zero-knowledge proofs.
arXiv Detail & Related papers (2021-11-11T16:08:44Z) - A Systematic Survey of Blockchained Federated Learning [22.710611199826925]
Federated learning (FL) can prevent privacy leakage by assigning training tasks to multiple clients.
FL still suffers from shortcomings such as single-point-failure and malicious data.
The emergence of blockchain provides a secure and efficient solution for the deployment of FL.
arXiv Detail & Related papers (2021-10-05T17:21:52Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z) - Resource Management for Blockchain-enabled Federated Learning: A Deep
Reinforcement Learning Approach [54.29213445674221]
Federated Learning (BFL) enables mobile devices to collaboratively train neural network models required by a Machine Learning Model Owner (MLMO)
The issue of BFL is that the mobile devices have energy and CPU constraints that may reduce the system lifetime and training efficiency.
We propose to use the Deep Reinforcement Learning (DRL) to derive the optimal decisions for theO.
arXiv Detail & Related papers (2020-04-08T16:29:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.