論文の概要: ParetoFlow: Guided Flows in Multi-Objective Optimization
- arxiv url: http://arxiv.org/abs/2412.03718v1
- Date: Wed, 04 Dec 2024 21:14:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:39:52.796515
- Title: ParetoFlow: Guided Flows in Multi-Objective Optimization
- Title(参考訳): ParetoFlow:多目的最適化におけるガイドフロー
- Authors: Ye Yuan, Can Chen, Christopher Pal, Xue Liu,
- Abstract要約: オフライン多目的最適化(MOO)では、関連するラベルのオフラインデータセットを同時に複数の目的に活用する。
最近のイテレーションは主に進化的最適化とベイズ最適化を採用しており、データに固有の生成能力に限定的に注意が向けられている。
本手法は,様々なタスクにおける最先端性能を実現する。
- 参考スコア(独自算出の注目度): 12.358524770639136
- License:
- Abstract: In offline multi-objective optimization (MOO), we leverage an offline dataset of designs and their associated labels to simultaneously minimize multiple objectives. This setting more closely mirrors complex real-world problems compared to single-objective optimization. Recent works mainly employ evolutionary algorithms and Bayesian optimization, with limited attention given to the generative modeling capabilities inherent in such data. In this study, we explore generative modeling in offline MOO through flow matching, noted for its effectiveness and efficiency. We introduce ParetoFlow, specifically designed to guide flow sampling to approximate the Pareto front. Traditional predictor (classifier) guidance is inadequate for this purpose because it models only a single objective. In response, we propose a multi-objective predictor guidance module that assigns each sample a weight vector, representing a weighted distribution across multiple objective predictions. A local filtering scheme is introduced to address non-convex Pareto fronts. These weights uniformly cover the entire objective space, effectively directing sample generation towards the Pareto front. Since distributions with similar weights tend to generate similar samples, we introduce a neighboring evolution module to foster knowledge sharing among neighboring distributions. This module generates offspring from these distributions, and selects the most promising one for the next iteration. Our method achieves state-of-the-art performance across various tasks.
- Abstract(参考訳): オフライン多目的最適化(MOO)では、設計とその関連ラベルのオフラインデータセットを活用し、複数の目的を同時に最小化する。
この設定は、単目的最適化よりも複雑な実世界の問題をよく反映している。
最近の研究は進化的アルゴリズムとベイズ最適化を中心とし、そのようなデータに固有の生成的モデリング能力に限定的に注目されている。
本研究では,オフラインMOOにおけるフローマッチングによる生成モデリングについて検討し,その有効性と効率について述べる。
ParetoFlowは,Paretoフロントを近似するために,フローサンプリングをガイドするように設計されている。
従来の予測器(分類器)のガイダンスは、単一の目的のみをモデル化するため、この目的には不十分である。
そこで本研究では,各サンプルに対して重み付き分布を表す重み付きベクトルを割り当てる多目的予測モジュールを提案する。
非凸パレートフロントに対処するために、局所フィルタリング方式が導入された。
これらの重みは目的空間全体を均一に覆い、サンプル生成をパレート前面に向けて効果的に導く。
類似の重みを持つ分布は類似のサンプルを生成する傾向があるため、近隣の分布間の知識共有を促進するため、近隣の進化モジュールを導入する。
このモジュールは、これらのディストリビューションから子孫を生成し、次のイテレーションで最も有望なものを選択する。
本手法は,様々なタスクにおける最先端性能を実現する。
関連論文リスト
- Federated Communication-Efficient Multi-Objective Optimization [27.492821176616815]
本稿では,従来の手法と比較して誤り収束性能を向上させる新しいFMOOアルゴリズムであるFedCMOOを提案する。
また,FedCMOOの変種を導入し,最終目標値の所望の比率で目的値の勾配を指定できるようにした。
論文 参考訳(メタデータ) (2024-10-21T18:09:22Z) - Preference Optimization with Multi-Sample Comparisons [53.02717574375549]
本稿では,マルチサンプル比較を含むポストトレーニングの拡張手法を提案する。
これらのアプローチは、生成的多様性やバイアスといった重要な特徴を捉えられない。
マルチサンプル比較はシングルサンプル比較よりも集団特性の最適化に有効であることを示す。
論文 参考訳(メタデータ) (2024-10-16T00:59:19Z) - Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
このチュートリアルは、下流の報酬関数を最適化するための微調整拡散モデルのための方法を網羅的に調査する。
PPO,微分可能最適化,報酬重み付きMLE,値重み付きサンプリング,経路整合性学習など,様々なRLアルゴリズムの適用について説明する。
論文 参考訳(メタデータ) (2024-07-18T17:35:32Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
大規模深層ニューラルネットワークに対する多目的最適化問題を解くことは、損失ランドスケープの複雑さと高価な計算コストのために難しい課題である。
本稿では,専門家(MoE)をベースとしたモデル融合を用いて,この問題を実用的でスケーラブルに解決する手法を提案する。
特殊な単一タスクモデルの重みをまとめることで、MoEモジュールは複数の目的間のトレードオフを効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-06-14T07:16:18Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - MotionDiffuser: Controllable Multi-Agent Motion Prediction using
Diffusion [15.146808801331774]
MotionDiffuserは、複数のエージェント上での将来の軌跡の連成分布の拡散に基づく表現である。
そこで本稿では,コスト関数の相違に基づくトラジェクトリサンプリングを可能にする汎用的な制約付きサンプリングフレームワークを提案する。
我々は,Open Motionデータセット上でのマルチエージェント動作予測の最先端結果を得る。
論文 参考訳(メタデータ) (2023-06-05T17:55:52Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
深層生成モデルは、生命科学における逆問題に対する一般的な機械学習ベースのアプローチとして登場した。
これらの問題は、データ分布の学習に加えて、興味のある複数の特性を満たす新しい設計をサンプリングする必要があることが多い。
論文 参考訳(メタデータ) (2022-10-19T19:04:45Z) - R-MBO: A Multi-surrogate Approach for Preference Incorporation in
Multi-objective Bayesian Optimisation [0.0]
本稿では,多目的BOにおける意思決定者の嗜好として,目的関数を目的関数値に組み込むための,a-priori Multi-surrogateアプローチを提案する。
ベンチマークと実世界の最適化問題に対する既存モノ代理手法との比較は,提案手法の可能性を示している。
論文 参考訳(メタデータ) (2022-04-27T19:58:26Z) - Multi-Task Learning on Networks [0.0]
マルチタスク学習コンテキストで発生する多目的最適化問題は、特定の特徴を持ち、アドホックな方法を必要とする。
この論文では、入力空間の解は、関数評価に含まれる知識をカプセル化した確率分布として表現される。
確率分布のこの空間では、ワッサーシュタイン距離によって与えられる計量が与えられ、モデルが目的関数に直接依存しないような新しいアルゴリズムMOEA/WSTを設計することができる。
論文 参考訳(メタデータ) (2021-12-07T09:13:10Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - Expected Information Maximization: Using the I-Projection for Mixture
Density Estimation [22.096148237257644]
高度にマルチモーダルなデータのモデリングは、機械学習において難しい問題である。
我々は,予測情報最大化(EIM)と呼ばれる新しいアルゴリズムを提案する。
我々のアルゴリズムは最近のGANアプローチよりもI射影の計算に効果的であることを示す。
論文 参考訳(メタデータ) (2020-01-23T17:24:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。