論文の概要: Online Experimental Design With Estimation-Regret Trade-off Under Network Interference
- arxiv url: http://arxiv.org/abs/2412.03727v1
- Date: Wed, 04 Dec 2024 21:45:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:39:04.640947
- Title: Online Experimental Design With Estimation-Regret Trade-off Under Network Interference
- Title(参考訳): ネットワーク干渉下における推定回帰トレードオフを用いたオンライン実験設計
- Authors: Zhiheng Zhang, Zichen Wang,
- Abstract要約: ネットワーク干渉は因果推論の分野で大きな関心を集めている。
因果効果を推定する古典的な方法の1つは、実験的候補を異なるグループにランダムに割り当て、それらの差を比較することである。
本稿では,統合的干渉に基づくオンライン実験設計フレームワークを開発する。
- 参考スコア(独自算出の注目度): 7.080131271060764
- License:
- Abstract: Network interference has garnered significant interest in the field of causal inference. It reflects diverse sociological behaviors, wherein the treatment assigned to one individual within a network may influence the outcome of other individuals, such as their neighbors. To estimate the causal effect, one classical way is to randomly assign experimental candidates into different groups and compare their differences. However, in the context of sequential experiments, such treatment assignment may result in a large regret. In this paper, we develop a unified interference-based online experimental design framework. Compared to existing literature, we expand the definition of arm space by leveraging the statistical concept of exposure mapping. Importantly, we establish the Pareto-optimal trade-off between the estimation accuracy and regret with respect to both time period and arm space, which remains superior to the baseline even in the absence of network interference. We further propose an algorithmic implementation and model generalization.
- Abstract(参考訳): ネットワーク干渉は因果推論の分野で大きな関心を集めている。
これは、ネットワーク内の1つの個人に割り当てられた治療が、隣人のような他の個人の結果に影響を与える可能性がある、多様な社会学的挙動を反映している。
因果効果を推定するために、実験的候補を異なるグループにランダムに割り当て、それらの差を比較する古典的な方法がある。
しかし、連続的な実験の文脈では、そのような治療の割り当ては大きな後悔をもたらす可能性がある。
本稿では,統合的干渉に基づくオンライン実験設計フレームワークを開発する。
既存の文献と比較して、露出マッピングの統計的概念を活用することにより、腕の空間の定義を拡大する。
重要なことは、ネットワーク干渉のない場合でも、基準線よりも優れている時間とアーム空間の両方に関して、推定精度と後悔とのパレート最適トレードオフを確立することである。
さらに,アルゴリズムの実装とモデル一般化を提案する。
関連論文リスト
- Can We Validate Counterfactual Estimations in the Presence of General Network Interference? [6.092214762701847]
対実推定のためのクロスバリデーションを実現する新しいフレームワークを提案する。
中心となるのは、分散保存ネットワークブートストラップ方式です。
我々は、不均一な単位レベル特性を取り入れることで、最近の因果メッセージパッシングの発展を拡大する。
論文 参考訳(メタデータ) (2025-02-03T06:51:04Z) - Network Causal Effect Estimation In Graphical Models Of Contagion And Latent Confounding [2.654975444537834]
多くのネットワーク研究の鍵となる疑問は、観測された単位間の相関は、主に感染や潜伏によるものであるかである。
ネットワーク因果効果の推定手法を提案する。
実世界のネットワークを用いて,合成データによる手法の有効性と仮定の有効性を評価する。
論文 参考訳(メタデータ) (2024-11-02T22:12:44Z) - Linear Contextual Bandits with Interference [14.835167982538053]
線形CB(LinCB)における干渉に対処するための体系的枠組みを導入する。
本稿では、報酬モデリングプロセスにおける干渉効果を明示的に定量化する一連のアルゴリズムを提案する。
提案手法の有効性をシミュレーションおよびMovieLensデータに基づく合成データを用いて実証した。
論文 参考訳(メタデータ) (2024-09-24T02:51:00Z) - Integrating Active Learning in Causal Inference with Interference: A
Novel Approach in Online Experiments [5.488412825534217]
ACI(Causal Inference with Interference)におけるアクティブラーニング手法について紹介する。
ACIはガウス過程を用いて、隣人の治療課題の連続的な測定の関数として直接的および余分な処理効果を柔軟にモデル化する。
データ要求の低減による精度の高い効果推定の実現可能性を示す。
論文 参考訳(メタデータ) (2024-02-20T04:13:59Z) - Causal Message Passing for Experiments with Unknown and General Network Interference [5.294604210205507]
複雑で未知のネットワーク干渉に対応する新しいフレームワークを提案する。
我々のフレームワークは因果的メッセージパッシングと呼ばれ、高次元近似的メッセージパッシング手法に基づいている。
本手法の有効性を5つの数値シナリオで示す。
論文 参考訳(メタデータ) (2023-11-14T17:31:50Z) - Neighborhood Adaptive Estimators for Causal Inference under Network
Interference [152.4519491244279]
我々は,古典的非干渉仮説の違反を考える。つまり,ある個人に対する治療が他者の結果に影響を及ぼす可能性がある。
干渉をトラクタブルにするために、干渉がどのように進行するかを記述する既知のネットワークを考える。
このような環境下での処理に対する平均的直接的処理効果の予測について検討した。
論文 参考訳(メタデータ) (2022-12-07T14:53:47Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
本研究では,人混みの軌跡を予測できるニューラルネットワークシステムを提案する。
解釈可能なルールベースのインテントを学び、ニューラルネットワークの表現可能性を利用してシーン固有の残差をモデル化する。
私たちのアーキテクチャは、インタラクション中心のベンチマークTrajNet++でテストされています。
論文 参考訳(メタデータ) (2021-05-07T09:22:34Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
本稿では,既存のアプローチと異なるニューラルネットワークの定義方法に焦点をあてる。
ニューラルネットワークの構造は、データとの相互作用にも拡張される制約の特別なクラスによって定義される。
提案した理論は時間領域にキャストされ, データを順序づけられた方法でネットワークに提示する。
論文 参考訳(メタデータ) (2020-09-01T09:07:25Z) - Interference and Generalization in Temporal Difference Learning [86.31598155056035]
時間差学習における一般化と干渉の関係について検討する。
教師付き学習ではTDが容易に低干渉,低一般化パラメータにつながり,その効果は逆のように見える。
論文 参考訳(メタデータ) (2020-03-13T15:49:58Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
我々は,連続的評価介入の効果を推定する問題に対処するため,GAN(Generative Adversarial Network)フレームワークを構築した。
我々のモデルであるSCIGANは柔軟であり、いくつかの異なる継続的な介入に対する対実的な結果の同時推定が可能である。
継続的な介入に移行することによって生じる課題に対処するために、差別者のための新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-27T18:46:21Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。