論文の概要: End to End Collaborative Synthetic Data Generation
- arxiv url: http://arxiv.org/abs/2412.03766v1
- Date: Wed, 04 Dec 2024 23:10:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:41:32.791910
- Title: End to End Collaborative Synthetic Data Generation
- Title(参考訳): エンド・トゥ・エンドのコラボレーション型合成データ生成
- Authors: Sikha Pentyala, Geetha Sitaraman, Trae Claar, Martine De Cock,
- Abstract要約: 合成データのパブリッシングのためのエンドツーエンド協調フレームワークを提案する。
我々は、このフレームワークをセキュア多党計算(MPC)プロトコルでインスタンス化し、白血病の合成ゲノムデータのプライバシー保護のためのユースケースとして評価する。
- 参考スコア(独自算出の注目度): 5.399800035598186
- License:
- Abstract: The success of AI is based on the availability of data to train models. While in some cases a single data custodian may have sufficient data to enable AI, often multiple custodians need to collaborate to reach a cumulative size required for meaningful AI research. The latter is, for example, often the case for rare diseases, with each clinical site having data for only a small number of patients. Recent algorithms for federated synthetic data generation are an important step towards collaborative, privacy-preserving data sharing. Existing techniques, however, focus exclusively on synthesizer training, assuming that the training data is already preprocessed and that the desired synthetic data can be delivered in one shot, without any hyperparameter tuning. In this paper, we propose an end-to-end collaborative framework for publishing of synthetic data that accounts for privacy-preserving preprocessing as well as evaluation. We instantiate this framework with Secure Multiparty Computation (MPC) protocols and evaluate it in a use case for privacy-preserving publishing of synthetic genomic data for leukemia.
- Abstract(参考訳): AIの成功は、モデルをトレーニングするためのデータの可用性に基づいている。
場合によっては、単一のデータカストディアンはAIを実現するのに十分なデータを持っているかもしれないが、意味のあるAI研究に必要な累積サイズに達するためには、複数のカストディアンは協力する必要がある。
例えば、後者はまれな疾患の場合が多く、各臨床部位には少数の患者しかデータを持っていない。
フェデレートされた合成データ生成のための最近のアルゴリズムは、協調的なプライバシー保護データ共有に向けた重要なステップである。
しかし、既存の技術は、トレーニングデータが既に前処理されていることと、所望の合成データがハイパーパラメータチューニングなしでワンショットで配信可能であることを前提として、シンセサイザートレーニングのみに重点を置いている。
本稿では,プライバシ保護前処理と評価のための合成データ公開のためのエンドツーエンド協調フレームワークを提案する。
我々は、このフレームワークをセキュア多党計算(MPC)プロトコルでインスタンス化し、白血病の合成ゲノムデータのプライバシー保護のためのユースケースとして評価する。
関連論文リスト
- SynRL: Aligning Synthetic Clinical Trial Data with Human-preferred Clinical Endpoints Using Reinforcement Learning [23.643984146939573]
患者データ生成装置の性能向上のために強化学習を活用するSynRLを提案する。
提案手法は,生成したデータの品質を評価するためのデータ値批判機能と,データジェネレータとユーザニーズを整合させる強化学習を利用する。
論文 参考訳(メタデータ) (2024-11-11T19:19:46Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Synthetic data generation for a longitudinal cohort study -- Evaluation,
method extension and reproduction of published data analysis results [0.32593385688760446]
医療分野では、プライバシー上の懸念から個人レベルのデータへのアクセスは困難であることが多い。
有望な代替手段は、完全な合成データの生成である。
本研究では,最先端の合成データ生成手法を用いる。
論文 参考訳(メタデータ) (2023-05-12T13:13:55Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
合成データは、機械学習の世界において支配的な力となり、データセットを個々のニーズに合わせて調整できる未来を約束する。
合成データのより広範な妥当性と適用のために,コミュニティが克服すべき根本的な課題について論じる。
論文 参考訳(メタデータ) (2023-04-07T16:38:40Z) - FedSyn: Synthetic Data Generation using Federated Learning [0.0]
現在の機械学習のプラクティスは、既存のデータセットから合成データを生成するために利用することができる。
データプライバシは、一部の機関が満足できないかもしれないことを懸念している。
本稿では,合成データを生成する新しい手法であるFedSynを提案する。
論文 参考訳(メタデータ) (2022-03-11T14:05:37Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
人物再識別(re-ID)は、ビデオ監視に広く応用されているため、ますます注目を集めている。
残念なことに、主流のディープラーニング手法では、モデルをトレーニングするために大量のラベル付きデータが必要です。
本稿では,コンピュータゲーム内で合成されたre-IDサンプルを自動的に生成するデータコレクタを開発し,同時にアノテートするデータラベラを構築した。
論文 参考訳(メタデータ) (2021-09-12T15:51:41Z) - Measuring Utility and Privacy of Synthetic Genomic Data [3.635321290763711]
人工ゲノムデータを生成するための5つの最先端モデルの実用性とプライバシ保護を最初に評価する。
全体として、ボード全体でうまく機能する合成ゲノムデータを生成するための単一のアプローチは存在しない。
論文 参考訳(メタデータ) (2021-02-05T17:41:01Z) - Fidelity and Privacy of Synthetic Medical Data [0.0]
医療記録のデジタル化は、新時代のビッグデータから臨床科学へとつながった。
個々のレベルの医療データを共有する必要性は増え続けており、これ以上緊急ではない。
ビッグデータの利用に対する熱意は、患者の自律性とプライバシに対する完全な適切な懸念によって誘惑された。
論文 参考訳(メタデータ) (2021-01-18T23:01:27Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Partially Conditioned Generative Adversarial Networks [75.08725392017698]
Generative Adversarial Networks (GAN)は、実世界のトレーニングデータセットの基盤となる確率分布を暗黙的にモデル化することで、人工データセットを合成する。
条件付きGANとその変種の導入により、これらの手法はデータセット内の各サンプルで利用可能な補助情報に基づいて条件付きサンプルを生成するように拡張された。
本研究では,標準条件付きGANがそのようなタスクに適さないことを論じ,新たなAdversarial Networkアーキテクチャとトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2020-07-06T15:59:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。