Community Detection with Heterogeneous Block Covariance Model
- URL: http://arxiv.org/abs/2412.03780v1
- Date: Wed, 04 Dec 2024 23:53:08 GMT
- Title: Community Detection with Heterogeneous Block Covariance Model
- Authors: Xiang Li, Yunpeng Zhao, Qing Pan, Ning Hao,
- Abstract summary: Community detection is the task of clustering objects based on their pairwise relationships.
Most of the model-based community detection methods are designed for networks with binary (yes/no) edges.
We introduce the heterogeneous block covariance model (HBCM) that defines a community structure within the covariance matrix.
- Score: 4.430448931299139
- License:
- Abstract: Community detection is the task of clustering objects based on their pairwise relationships. Most of the model-based community detection methods, such as the stochastic block model and its variants, are designed for networks with binary (yes/no) edges. In many practical scenarios, edges often possess continuous weights, spanning positive and negative values, which reflect varying levels of connectivity. To address this challenge, we introduce the heterogeneous block covariance model (HBCM) that defines a community structure within the covariance matrix, where edges have signed and continuous weights. Furthermore, it takes into account the heterogeneity of objects when forming connections with other objects within a community. A novel variational expectation-maximization algorithm is proposed to estimate the group membership. The HBCM provides provable consistent estimates of memberships, and its promising performance is observed in numerical simulations with different setups. The model is applied to a single-cell RNA-seq dataset of a mouse embryo and a stock price dataset. Supplementary materials for this article are available online.
Related papers
- VEC-SBM: Optimal Community Detection with Vectorial Edges Covariates [67.51637355249986]
We study an extension of the Block Model (SBM), a widely used statistical framework for community detection.
We propose a novel algorithm based on iterative refinement techniques and show that it optimally recovers the latent communities.
We rigorously assess the added value of leveraging edge's side information in the community detection process.
arXiv Detail & Related papers (2024-02-29T02:19:55Z) - Fundamental limits of community detection from multi-view data:
multi-layer, dynamic and partially labeled block models [7.778975741303385]
We study community detection in multi-view data in modern network analysis.
We characterize the mutual information between the data and the latent parameters.
We introduce iterative algorithms based on Approximate Message Passing for community detection.
arXiv Detail & Related papers (2024-01-16T07:13:32Z) - Estimating Higher-Order Mixed Memberships via the $\ell_{2,\infty}$
Tensor Perturbation Bound [8.521132000449766]
We propose the tensor mixed-membership blockmodel, a generalization of the tensor blockmodel.
We establish the identifiability of our model and propose a computationally efficient estimation procedure.
We apply our methodology to real and simulated data, demonstrating some effects not identifiable from the model with discrete community memberships.
arXiv Detail & Related papers (2022-12-16T18:32:20Z) - Bayesian community detection for networks with covariates [16.230648949593153]
"Community detection" has arguably received the most attention in the scientific community.
We propose a block model with a co-dependent random partition prior.
Our model has the ability to learn the number of the communities via posterior inference without having to assume it to be known.
arXiv Detail & Related papers (2022-03-04T01:58:35Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
This paper considers the problem of online clustering with bandit feedback.
It includes a novel stopping rule for sequential testing that circumvents the need to solve any NP-hard weighted clustering problem as its subroutines.
We show through extensive simulations on synthetic and real-world datasets that BOC's performance matches the lower boundally, and significantly outperforms a non-adaptive baseline algorithm.
arXiv Detail & Related papers (2022-02-09T06:05:05Z) - CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator [60.799183326613395]
We propose an unbiased estimator for categorical random variables based on multiple mutually negatively correlated (jointly antithetic) samples.
CARMS combines REINFORCE with copula based sampling to avoid duplicate samples and reduce its variance, while keeping the estimator unbiased using importance sampling.
We evaluate CARMS on several benchmark datasets on a generative modeling task, as well as a structured output prediction task, and find it to outperform competing methods including a strong self-control baseline.
arXiv Detail & Related papers (2021-10-26T20:14:30Z) - Finding Geometric Models by Clustering in the Consensus Space [61.65661010039768]
We propose a new algorithm for finding an unknown number of geometric models, e.g., homographies.
We present a number of applications where the use of multiple geometric models improves accuracy.
These include pose estimation from multiple generalized homographies; trajectory estimation of fast-moving objects.
arXiv Detail & Related papers (2021-03-25T14:35:07Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
We propose a method to fuse posterior distributions learned from heterogeneous datasets.
Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors.
arXiv Detail & Related papers (2020-07-13T03:27:45Z) - Blocked Clusterwise Regression [0.0]
We generalize previous approaches to discrete unobserved heterogeneity by allowing each unit to have multiple latent variables.
We contribute to the theory of clustering with an over-specified number of clusters and derive new convergence rates for this setting.
arXiv Detail & Related papers (2020-01-29T23:29:31Z) - Pairwise Covariates-adjusted Block Model for Community Detection [9.423321226644891]
Community detection is one of the most fundamental problems in network study.
We introduce a pairwise co-adjusted generalization block model (PCABM)
We show that PCABM is consistent under suitable sparsity conditions.
arXiv Detail & Related papers (2018-07-10T03:37:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.