論文の概要: I$^2$OL-Net: Intra-Inter Objectness Learning Network for Point-Supervised X-Ray Prohibited Item Detection
- arxiv url: http://arxiv.org/abs/2412.03811v1
- Date: Thu, 05 Dec 2024 02:08:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:40:59.223141
- Title: I$^2$OL-Net: Intra-Inter Objectness Learning Network for Point-Supervised X-Ray Prohibited Item Detection
- Title(参考訳): I$^2$OL-Net:ポイントスーパービジョンX線禁止項目検出のためのイントラインターオブジェクトネス学習ネットワーク
- Authors: Sanjoeng Wong, Yan Yan,
- Abstract要約: I$2$OL-Netは、モダリティ内オブジェクトネス学習(intra-OL)モジュールと、モダリティ間オブジェクトネス学習(inter-OL)モジュールの2つの主要なモジュールで構成されている。
I$2$OL-Netは、X線画像のクラス内変化による部分支配の問題を大幅に緩和する。
- 参考スコア(独自算出の注目度): 9.570650109953679
- License:
- Abstract: Automatic detection of prohibited items in X-ray images plays a crucial role in public security. However, existing methods rely heavily on labor-intensive box annotations. To address this, we investigate X-ray prohibited item detection under labor-efficient point supervision and develop an intra-inter objectness learning network (I$^2$OL-Net). I$^2$OL-Net consists of two key modules: an intra-modality objectness learning (intra-OL) module and an inter-modality objectness learning (inter-OL) module. The intra-OL module designs a local focus Gaussian masking block and a global random Gaussian masking block to collaboratively learn the objectness in X-ray images. Meanwhile, the inter-OL module introduces the wavelet decomposition-based adversarial learning block and the objectness block, effectively reducing the modality discrepancy and transferring the objectness knowledge learned from natural images with box annotations to X-ray images. Based on the above, I$^2$OL-Net greatly alleviates the problem of part domination caused by severe intra-class variations in X-ray images. Experimental results on four X-ray datasets show that I$^2$OL-Net can achieve superior performance with a significant reduction of annotation cost, thus enhancing its accessibility and practicality.
- Abstract(参考訳): X線画像における禁止アイテムの自動検出は、公共の安全において重要な役割を担っている。
しかし、既存の方法は労働集約的なボックスアノテーションに大きく依存している。
そこで本研究では,労働効率の高い点監督下でのX線禁止項目検出について検討し,イントライントラオブジェクトネス学習ネットワーク(I$^2$OL-Net)を開発した。
I$^2$OL-Netは、モダリティ内オブジェクトネス学習(intra-OL)モジュールと、モダリティ間オブジェクトネス学習(inter-OL)モジュールの2つの主要なモジュールから構成される。
このモジュールは局所焦点ガウスマスキングブロックとグローバルランダムガウスマスキングブロックを設計し、X線画像の目的性を協調的に学習する。
一方、インターOLモジュールは、ウェーブレット分解に基づく対向学習ブロックとオブジェクト性ブロックを導入し、モダリティの相違を効果的に低減し、ボックスアノテーションによる自然な画像から学んだ対象性知識をX線画像に転送する。
以上のことから,I$^2$OL-Netは,X線画像のクラス内変化が激しいため,部分支配の問題を大幅に緩和する。
4つのX線データセットによる実験結果から,I$^2$OL-Netはアノテーションコストを大幅に削減し,そのアクセシビリティと実用性を向上させることができることがわかった。
関連論文リスト
- Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Illicit item detection in X-ray images for security applications [7.519872646378835]
X線画像におけるコントラバンドアイテムの自動検出は、公共の安全を著しく向上させる。
ディープニューラルネットワーク(DNN)に依存する現代のコンピュータビジョンアルゴリズムは、このタスクを遂行できることを証明している。
本稿では,X線解析領域におけるそのようなアルゴリズムの2倍の改良を提案する。
論文 参考訳(メタデータ) (2023-05-03T07:28:05Z) - De-coupling and De-positioning Dense Self-supervised Learning [65.56679416475943]
Dense Self-Supervised Learning (SSL)メソッドは、複数のオブジェクトでイメージを処理する際に、画像レベルの特徴表現を使用する際の制限に対処する。
本研究は, 層深度やゼロパディングに伴う受容野の増大によって生じる, 結合と位置バイアスに悩まされていることを示す。
我々はCOCOにおける本手法の利点と、オブジェクト分類、セマンティックセグメンテーション、オブジェクト検出のための新しい挑戦的ベンチマークであるOpenImage-MINIについて示す。
論文 参考訳(メタデータ) (2023-03-29T18:07:25Z) - On the impact of using X-ray energy response imagery for object
detection via Convolutional Neural Networks [17.639472693362926]
我々は,X線エネルギー応答(高,低)と有効Zの影響について,測地値と比較して検討した。
我々は、CNNアーキテクチャを評価し、そのような「Raw」変種画像で訓練されたモデルの転送可能性について検討する。
論文 参考訳(メタデータ) (2021-08-27T21:28:28Z) - Towards Real-World Prohibited Item Detection: A Large-Scale X-ray
Benchmark [53.9819155669618]
本稿では,PIDrayと命名された大規模データセットについて述べる。
大量の努力を払って、私たちのデータセットには、高品質な注釈付きセグメンテーションマスクとバウンディングボックスを備えた47,677ドルのX線画像に、禁止アイテムの12ドルカテゴリが含まれています。
提案手法は最先端の手法に対して,特に故意に隠された項目を検出するために好適に機能する。
論文 参考訳(メタデータ) (2021-08-16T11:14:16Z) - Over-sampling De-occlusion Attention Network for Prohibited Items
Detection in Noisy X-ray Images [35.35752470993847]
セキュリティ検査は、スーツケースの個人持ち物のX線スキャンです。
一般的な画像認識データセットを通じてトレーニングされた従来のCNNベースのモデルは、このシナリオで十分なパフォーマンスを達成できない。
新規な脱閉塞注意モジュールと新しいオーバーサンプリングトレーニング戦略からなるオーバーサンプリング脱閉塞注意ネットワーク(DOAM-O)を提案する。
論文 参考訳(メタデータ) (2021-03-01T07:17:37Z) - Weakly-Supervised Saliency Detection via Salient Object Subitizing [57.17613373230722]
我々は,クラス非依存であるため,弱い監督としてサリエンシー・サブイタライジングを導入する。
これにより、監視はサリエンシー検出の特性と整合することができます。
5つのベンチマークデータセットに対して広範な実験を行う。
論文 参考訳(メタデータ) (2021-01-04T12:51:45Z) - Improving Object Detection with Selective Self-supervised Self-training [62.792445237541145]
本研究では,Web画像を利用した人為的対象検出データセットの強化について検討する。
画像と画像の検索によりWebイメージを検索し、他の検索手法に比べて、キュレートされたデータからのドメインシフトが少なくなる。
画像分類のためのラベルのないデータを探索する2つの並列処理をモチベーションとした新しい学習手法を提案する。
論文 参考訳(メタデータ) (2020-07-17T18:05:01Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
我々はX-ModalNetと呼ばれる新しいクロスモーダルディープラーニングフレームワークを提案する。
X-ModalNetは、ネットワークの上部にある高レベルな特徴によって構築されたアップダスタブルグラフ上にラベルを伝搬するため、うまく一般化する。
我々は2つのマルチモーダルリモートセンシングデータセット(HSI-MSIとHSI-SAR)上でX-ModalNetを評価し、いくつかの最先端手法と比較して大幅に改善した。
論文 参考訳(メタデータ) (2020-06-24T15:29:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。