CRAFT: Designing Creative and Functional 3D Objects
- URL: http://arxiv.org/abs/2412.03889v2
- Date: Fri, 28 Mar 2025 05:40:38 GMT
- Title: CRAFT: Designing Creative and Functional 3D Objects
- Authors: Michelle Guo, Mia Tang, Hannah Cha, Ruohan Zhang, C. Karen Liu, Jiajun Wu,
- Abstract summary: We present a method to synthesize body-aware 3D objects from a base mesh.<n>The generated objects can be simulated on virtual characters, or fabricated for real-world use.
- Score: 19.543575491040375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For designing a wide range of everyday objects, the design process should be aware of both the human body and the underlying semantics of the design specification. However, these two objectives present significant challenges to the current AI-based designing tools. In this work, we present a method to synthesize body-aware 3D objects from a base mesh given an input body geometry and either text or image as guidance. The generated objects can be simulated on virtual characters, or fabricated for real-world use. We propose to use a mesh deformation procedure that optimizes for both semantic alignment as well as contact and penetration losses. Using our method, users can generate both virtual or real-world objects from text, image, or sketch, without the need for manual artist intervention. We present both qualitative and quantitative results on various object categories, demonstrating the effectiveness of our approach.
Related papers
- Object Learning and Robust 3D Reconstruction [7.092348056331202]
We discuss architectural designs and training methods for a neural network to dissect an image into objects of interest without supervision.
FlowCapsules uses motion as a cue for the objects of interest in 2D scenarios.
We leverage the geometric consistency of scenes in 3D to detect the inconsistent dynamic objects.
arXiv Detail & Related papers (2025-04-22T21:48:31Z) - HiScene: Creating Hierarchical 3D Scenes with Isometric View Generation [50.206100327643284]
HiScene is a novel hierarchical framework that bridges the gap between 2D image generation and 3D object generation.
We generate 3D content that aligns with 2D representations while maintaining compositional structure.
arXiv Detail & Related papers (2025-04-17T16:33:39Z) - Zero-Shot Human-Object Interaction Synthesis with Multimodal Priors [31.277540988829976]
This paper proposes a novel zero-shot HOI synthesis framework without relying on end-to-end training on currently limited 3D HOI datasets.
We employ pre-trained human pose estimation models to extract human poses and introduce a generalizable category-level 6-DoF estimation method to obtain the object poses from 2D HOI images.
arXiv Detail & Related papers (2025-03-25T23:55:47Z) - Dynamic Scene Understanding through Object-Centric Voxelization and Neural Rendering [57.895846642868904]
We present a 3D generative model named DynaVol-S for dynamic scenes that enables object-centric learning.
voxelization infers per-object occupancy probabilities at individual spatial locations.
Our approach integrates 2D semantic features to create 3D semantic grids, representing the scene through multiple disentangled voxel grids.
arXiv Detail & Related papers (2024-07-30T15:33:58Z) - SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
We introduce a novel 3D pre-training framework for robotics named SUGAR.
SUGAR captures semantic, geometric and affordance properties of objects through 3D point clouds.
We show that SUGAR's 3D representation outperforms state-of-the-art 2D and 3D representations.
arXiv Detail & Related papers (2024-04-01T21:23:03Z) - CharNeRF: 3D Character Generation from Concept Art [3.8061090528695543]
We present a novel approach to create volumetric representations of 3D characters from consistent turnaround concept art.
We train the network to make use of these priors for various 3D points through a learnable view-direction-attended multi-head self-attention layer.
Our model is able to generate high-quality 360-degree views of characters.
arXiv Detail & Related papers (2024-02-27T01:22:08Z) - Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models [8.933560282929726]
We introduce a novel affordance representation, named Comprehensive Affordance (ComA)
Given a 3D object mesh, ComA models the distribution of relative orientation and proximity of vertices in interacting human meshes.
We demonstrate that ComA outperforms competitors that rely on human annotations in modeling contact-based affordance.
arXiv Detail & Related papers (2024-01-23T18:59:59Z) - ObjectStitch: Generative Object Compositing [43.206123360578665]
We propose a self-supervised framework for object compositing using conditional diffusion models.
Our framework can transform the viewpoint, geometry, color and shadow of the generated object while requiring no manual labeling.
Our method outperforms relevant baselines in both realism and faithfulness of the synthesized result images in a user study on various real-world images.
arXiv Detail & Related papers (2022-12-02T02:15:13Z) - Learning Canonical 3D Object Representation for Fine-Grained Recognition [77.33501114409036]
We propose a novel framework for fine-grained object recognition that learns to recover object variation in 3D space from a single image.
We represent an object as a composition of 3D shape and its appearance, while eliminating the effect of camera viewpoint.
By incorporating 3D shape and appearance jointly in a deep representation, our method learns the discriminative representation of the object.
arXiv Detail & Related papers (2021-08-10T12:19:34Z) - Object Wake-up: 3-D Object Reconstruction, Animation, and in-situ
Rendering from a Single Image [58.69732754597448]
Given a picture of a chair, could we extract the 3-D shape of the chair, animate its plausible articulations and motions, and render in-situ in its original image space?
We devise an automated approach to extract and manipulate articulated objects in single images.
arXiv Detail & Related papers (2021-08-05T16:20:12Z) - Learning to Reconstruct and Segment 3D Objects [4.709764624933227]
We aim to understand scenes and the objects within them by learning general and robust representations using deep neural networks.
This thesis makes three core contributions from object-level 3D shape estimation from single or multiple views to scene-level semantic understanding.
arXiv Detail & Related papers (2020-10-19T15:09:04Z) - Mask2CAD: 3D Shape Prediction by Learning to Segment and Retrieve [54.054575408582565]
We propose to leverage existing large-scale datasets of 3D models to understand the underlying 3D structure of objects seen in an image.
We present Mask2CAD, which jointly detects objects in real-world images and for each detected object, optimize for the most similar CAD model and its pose.
This produces a clean, lightweight representation of the objects in an image.
arXiv Detail & Related papers (2020-07-26T00:08:37Z) - Towards Realistic 3D Embedding via View Alignment [53.89445873577063]
This paper presents an innovative View Alignment GAN (VA-GAN) that composes new images by embedding 3D models into 2D background images realistically and automatically.
VA-GAN consists of a texture generator and a differential discriminator that are inter-connected and end-to-end trainable.
arXiv Detail & Related papers (2020-07-14T14:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.