Dual-Branch Subpixel-Guided Network for Hyperspectral Image Classification
- URL: http://arxiv.org/abs/2412.03893v1
- Date: Thu, 05 Dec 2024 06:03:09 GMT
- Title: Dual-Branch Subpixel-Guided Network for Hyperspectral Image Classification
- Authors: Zhu Han, Jin Yang, Lianru Gao, Zhiqiang Zeng, Bing Zhang, Jocelyn Chanussot,
- Abstract summary: We propose a novel dual-branch subpixel-guided network for hyperspectral image (HSI) classification, called DSNet.
It automatically integrates subpixel information and convolutional class features by introducing a deep autoencoder unmixing architecture.
Experimental results on three benchmark datasets demonstrate the effectiveness and superiority of DSNet compared with state-of-the-art DL-based HSI classification approaches.
- Score: 39.13416711669201
- License:
- Abstract: Deep learning (DL) has been widely applied into hyperspectral image (HSI) classification owing to its promising feature learning and representation capabilities. However, limited by the spatial resolution of sensors, existing DL-based classification approaches mainly focus on pixel-level spectral and spatial information extraction through complex network architecture design, while ignoring the existence of mixed pixels in actual scenarios. To tackle this difficulty, we propose a novel dual-branch subpixel-guided network for HSI classification, called DSNet, which automatically integrates subpixel information and convolutional class features by introducing a deep autoencoder unmixing architecture to enhance classification performance. DSNet is capable of fully considering physically nonlinear properties within subpixels and adaptively generating diagnostic abundances in an unsupervised manner to achieve more reliable decision boundaries for class label distributions. The subpixel fusion module is designed to ensure high-quality information fusion across pixel and subpixel features, further promoting stable joint classification. Experimental results on three benchmark datasets demonstrate the effectiveness and superiority of DSNet compared with state-of-the-art DL-based HSI classification approaches. The codes will be available at https://github.com/hanzhu97702/DSNet, contributing to the remote sensing community.
Related papers
- Superpixel-based and Spatially-regularized Diffusion Learning for
Unsupervised Hyperspectral Image Clustering [4.643572021927615]
This paper introduces a novel unsupervised HSI clustering algorithm, Superpixel-based and Spatially-regularized Diffusion Learning (S2DL)
S2DL incorporates rich spatial information encoded in HSIs into diffusion geometry-based clustering.
S2DL's performance is illustrated with extensive experiments on three publicly available, real-world HSIs.
arXiv Detail & Related papers (2023-12-24T09:54:40Z) - Rethinking Unsupervised Neural Superpixel Segmentation [6.123324869194195]
unsupervised learning for superpixel segmentation via CNNs has been studied.
We propose three key elements to improve the efficacy of such networks.
By experimenting with the BSDS500 dataset, we find evidence to the significance of our proposal.
arXiv Detail & Related papers (2022-06-21T09:30:26Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
This paper focuses on how to embed the high-dimensional spatial-spectral information of hyperspectral (HS) images efficiently and effectively.
We formulate HS embedding as an approximation of the posterior distribution of a set of carefully-defined HS embedding events.
Then, we incorporate the proposed feature embedding scheme into a source-consistent super-resolution framework that is physically-interpretable.
Experiments over three common benchmark datasets demonstrate that PDE-Net achieves superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-30T06:59:01Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
We propose a subpixel-level HS super-resolution framework by devising a novel decoupled-and-coupled network, called DCNet.
As the name suggests, DC-Net first decouples the input into common (or cross-sensor) and sensor-specific components.
We append a self-supervised learning module behind the CSU net by guaranteeing the material consistency to enhance the detailed appearances of the restored HS product.
arXiv Detail & Related papers (2022-05-07T23:40:36Z) - VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection [5.12292602924464]
This paper proposes a fusion-based 3D object detection network, named Voxel-Pixel Fusion Network (VPFNet)
The proposed method is evaluated on the KITTI benchmark for multi-class 3D object detection task under multilevel difficulty.
It is shown to outperform all state-of-the-art methods in mean average precision (mAP)
arXiv Detail & Related papers (2021-11-01T14:17:09Z) - Superpixel-guided Discriminative Low-rank Representation of
Hyperspectral Images for Classification [49.32130776974202]
SP-DLRR is composed of two modules, i.e., the classification-guided superpixel segmentation and the discriminative low-rank representation.
Experimental results on three benchmark datasets demonstrate the significant superiority of SP-DLRR over state-of-the-art methods.
arXiv Detail & Related papers (2021-08-25T10:47:26Z) - Compressive spectral image classification using 3D coded convolutional
neural network [12.67293744927537]
This paper develops a novel deep learning HIC approach based on measurements of coded-aperture snapshot spectral imagers (CASSI)
A new kind of deep learning strategy, namely 3D coded convolutional neural network (3D-CCNN), is proposed to efficiently solve for the classification problem.
The accuracy of classification is effectively improved by exploiting the synergy between the deep learning network and coded apertures.
arXiv Detail & Related papers (2020-09-23T15:05:57Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z) - A U-Net Based Discriminator for Generative Adversarial Networks [86.67102929147592]
We propose an alternative U-Net based discriminator architecture for generative adversarial networks (GANs)
The proposed architecture allows to provide detailed per-pixel feedback to the generator while maintaining the global coherence of synthesized images.
The novel discriminator improves over the state of the art in terms of the standard distribution and image quality metrics.
arXiv Detail & Related papers (2020-02-28T11:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.