論文の概要: Can Targeted Clean-Label Poisoning Attacks Generalize?
- arxiv url: http://arxiv.org/abs/2412.03908v1
- Date: Thu, 05 Dec 2024 06:27:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 20:43:01.919655
- Title: Can Targeted Clean-Label Poisoning Attacks Generalize?
- Title(参考訳): クリーンラベルの毒殺攻撃を狙うことができるのか?
- Authors: Zhizhen Chen, Subrat Kishore Dutta, Zhengyu Zhao, Chenhao Lin, Chao Shen, Xiao Zhang,
- Abstract要約: 標的の毒殺攻撃が、それらの標的の未知のバリエーションに一般化できるかどうかを検討する。
特に、異なる視点を持つ物体や、異なる外観を持つ動物種など、多様な標的変異を探索する。
本手法はコサイン類似性に基づく攻撃を20.95%の精度で達成する。
- 参考スコア(独自算出の注目度): 11.499065606209925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Targeted poisoning attacks aim to compromise the model's prediction on specific target samples. In a common clean-label setting, they are achieved by slightly perturbing a subset of training samples given access to those specific targets. Despite continuous efforts, it remains unexplored whether such attacks can generalize to unknown variations of those targets. In this paper, we take the first step to systematically study this generalization problem. Observing that the widely adopted, cosine similarity-based attack exhibits limited generalizability, we propose a well-generalizable attack that leverages both the direction and magnitude of model gradients. In particular, we explore diverse target variations, such as an object with varied viewpoints and an animal species with distinct appearances. Extensive experiments across various generalization scenarios demonstrate that our method consistently achieves the best attack effectiveness. For example, our method outperforms the cosine similarity-based attack by 20.95% in attack success rate with similar overall accuracy, averaged over four models on two image benchmark datasets. The code is available at https://github.com/jiaangk/generalizable_tcpa
- Abstract(参考訳): 標的の毒殺攻撃は、特定のターゲットサンプルに対するモデルの予測を損なうことを目的としている。
一般的なクリーンラベル設定では、特定のターゲットへのアクセスを与えられたトレーニングサンプルのサブセットをわずかに摂動させることで達成される。
継続的な努力にもかかわらず、そのような攻撃がそれらの標的の未知のバリエーションに一般化できるかどうかはまだ明らかになっていない。
本稿では,この一般化問題を体系的に研究する第一歩を踏み出す。
広く採用されているコサイン類似性に基づく攻撃は、限定的な一般化性を示す。
特に、異なる視点を持つ物体や、異なる外観を持つ動物種など、多様な標的変異を探索する。
様々な一般化シナリオにわたる大規模な実験により,本手法が最高の攻撃効果を確実に達成できることが実証された。
例えば、我々の手法は、2つの画像ベンチマークデータセットで平均4モデル以上の精度で、コサイン類似性に基づく攻撃を20.95%の攻撃成功率で上回っている。
コードはhttps://github.com/jiaangk/ generalizable_tcpaで入手できる。
関連論文リスト
- A Few Large Shifts: Layer-Inconsistency Based Minimal Overhead Adversarial Example Detection [9.335304254034401]
我々は、ターゲットモデル自体の内部の階層的不整合を利用して、軽量なプラグイン検出フレームワークを導入する。
本手法は, 計算オーバーヘッドを無視し, 正確さを損なうことなく, 最先端検出性能を実現する。
論文 参考訳(メタデータ) (2025-05-19T00:48:53Z) - Any Target Can be Offense: Adversarial Example Generation via Generalized Latent Infection [83.72430401516674]
GAKerは任意のターゲットクラスに対して逆例を構築することができる。
本手法は,未知のクラスに対する攻撃成功率を約14.13%で達成する。
論文 参考訳(メタデータ) (2024-07-17T03:24:09Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
モデル反転攻撃(MIA)は、ターゲット分類器のトレーニングセットからプライベートイメージを再構築することを目的としており、それによってAIアプリケーションにおけるプライバシー上の懸念が高まる。
従来のGANベースのMIAは、GANの固有の欠陥と潜伏空間における最適化の偏りにより、劣った遺伝子的忠実度に悩まされる傾向にある。
これらの問題を緩和するために拡散モデル反転(Diff-MI)攻撃を提案する。
論文 参考訳(メタデータ) (2024-07-16T06:38:49Z) - AttackBench: Evaluating Gradient-based Attacks for Adversarial Examples [26.37278338032268]
アドリシャルな例は、通常、勾配ベースの攻撃に最適化される。
それぞれ異なる実験装置を用いて前任者を上回る性能を発揮する。
これは過度に最適化され、偏見のある評価を提供する。
論文 参考訳(メタデータ) (2024-04-30T11:19:05Z) - What Matters When Repurposing Diffusion Models for General Dense Perception Tasks? [49.84679952948808]
最近の研究は、高密度知覚タスクのためのT2I拡散モデルを簡単に調整することで有望な結果を示す。
拡散前処理における伝達効率と性能に影響を及ぼす重要な要因を徹底的に検討する。
我々の研究は、濃密な視覚認知タスクに特化した効果的な決定論的ワンステップ微調整パラダイムであるGenPerceptの開発において頂点に達した。
論文 参考訳(メタデータ) (2024-03-10T04:23:24Z) - Can We Trust the Unlabeled Target Data? Towards Backdoor Attack and Defense on Model Adaptation [120.42853706967188]
本研究は, よく設計された毒物標的データによるモデル適応に対するバックドア攻撃の可能性を探る。
既存の適応アルゴリズムと組み合わせたMixAdaptというプラグイン・アンド・プレイ方式を提案する。
論文 参考訳(メタデータ) (2024-01-11T16:42:10Z) - Transferable Attack for Semantic Segmentation [59.17710830038692]
敵が攻撃し、ソースモデルから生成された敵の例がターゲットモデルを攻撃するのに失敗するのを観察します。
本研究では, セマンティックセグメンテーションのためのアンサンブルアタックを提案する。
論文 参考訳(メタデータ) (2023-07-31T11:05:55Z) - Improving Adversarial Transferability via Intermediate-level
Perturbation Decay [79.07074710460012]
我々は,一段階の最適化で敵の例を再現する新しい中間レベル手法を開発した。
実験結果から, 種々の犠牲者モデルに対する攻撃において, 最先端技術よりも大きな差が認められた。
論文 参考訳(メタデータ) (2023-04-26T09:49:55Z) - Decision-BADGE: Decision-based Adversarial Batch Attack with Directional
Gradient Estimation [0.0]
Decision-BADGEは、決定ベースのブラックボックス攻撃を実行するために、普遍的な敵の摂動を構築する新しい方法である。
提案手法は,トレーニング時間が少なく,良好な成功率を示す。
この研究は、Decision-BADGEが未確認の犠牲者モデルを無視し、特定のクラスを正確にターゲットすることができることも示している。
論文 参考訳(メタデータ) (2023-03-09T01:42:43Z) - GLOW: Global Layout Aware Attacks for Object Detection [27.46902978168904]
敵攻撃は、予測器が誤った結果を出力するような摂動画像を狙う。
本稿では,グローバルなレイアウト認識型敵攻撃を発生させることにより,様々な攻撃要求に対処するアプローチを提案する。
実験では,複数種類の攻撃要求を設計し,MS検証セット上でのアイデアの検証を行う。
論文 参考訳(メタデータ) (2023-02-27T22:01:34Z) - Object-fabrication Targeted Attack for Object Detection [54.10697546734503]
物体検出の敵攻撃は 標的攻撃と未標的攻撃を含む。
新たなオブジェクトファブリケーションターゲット攻撃モードは、特定のターゲットラベルを持つ追加の偽オブジェクトをファブリケートする検出器を誤解させる可能性がある。
論文 参考訳(メタデータ) (2022-12-13T08:42:39Z) - Not All Poisons are Created Equal: Robust Training against Data
Poisoning [15.761683760167777]
データ中毒は、トレーニングデータに悪意ある工芸品のサンプルを注入することで、テスト時間対象のサンプルを誤分類する。
各種データ中毒攻撃の成功率を大幅に低減する効率的な防御機構を提案する。
論文 参考訳(メタデータ) (2022-10-18T08:19:41Z) - Unreasonable Effectiveness of Last Hidden Layer Activations [0.5156484100374058]
本研究では, 高い温度値を持つモデルの出力層で広く知られているアクティベーション関数を用いることで, 標的および標的外攻撃事例の勾配をゼロにする効果が示された。
CIFAR10データセットであるMNIST(Digit)に対するアプローチの有効性を実験的に検証した。
論文 参考訳(メタデータ) (2022-02-15T12:02:59Z) - Identifying a Training-Set Attack's Target Using Renormalized Influence
Estimation [11.663072799764542]
本研究は、特定のテストインスタンスがトレーニングセットアタックのターゲットであるかどうかを判定するターゲット識別タスクを提案する。
単一の攻撃方法やデータモダリティではなく、各トレーニングインスタンスのモデル予測への貢献度を定量化するインフルエンス推定に基づいて構築する。
論文 参考訳(メタデータ) (2022-01-25T02:36:34Z) - Adaptive Perturbation for Adversarial Attack [50.77612889697216]
そこで本研究では,新たな逆例に対する勾配に基づく攻撃手法を提案する。
逆方向の摂動を発生させるために,スケーリング係数を用いた正確な勾配方向を用いる。
本手法は, 高い伝達性を示し, 最先端の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-11-27T07:57:41Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - Modeling Object Dissimilarity for Deep Saliency Prediction [86.14710352178967]
本稿では,複数の物体間の差分をモデル化する検出誘導サリエンシー予測ネットワークについて紹介する。
私たちのアプローチは一般的であり、深いサリエンシー予測ネットワークから抽出された特徴とオブジェクトの不類似性を融合させることができます。
論文 参考訳(メタデータ) (2021-04-08T16:10:37Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
Emphbackdoor攻撃は、深層ニューラルネットワーク(DNN)に隠れたバックドアを埋め込み、トレーニングデータに毒を盛ることを目的としている。
我々は,対象ラベルを画像レベルではなくオブジェクトレベルから扱う,新たな攻撃パラダイムであるemphfine-fine-grained attackを提案する。
実験により、提案手法はわずかなトレーニングデータだけを毒殺することでセマンティックセグメンテーションモデルを攻撃することに成功した。
論文 参考訳(メタデータ) (2021-03-06T05:50:29Z) - Untargeted, Targeted and Universal Adversarial Attacks and Defenses on
Time Series [0.0]
我々は,UCR時系列データセットに対して,対象外,対象外,普遍的敵攻撃を行った。
これらの攻撃に対して,ディープラーニングに基づく時系列分類モデルが脆弱であることを示す。
また、トレーニングデータのごく一部しか必要としないため、普遍的敵攻撃は優れた一般化特性を有することを示す。
論文 参考訳(メタデータ) (2021-01-13T13:00:51Z) - Patch-wise++ Perturbation for Adversarial Targeted Attacks [132.58673733817838]
トランスファビリティの高い対比例の作成を目的としたパッチワイズ反復法(PIM)を提案する。
具体的には、各イテレーションのステップサイズに増幅係数を導入し、$epsilon$-constraintをオーバーフローする1ピクセルの全体的な勾配が、その周辺領域に適切に割り当てられる。
現在の攻撃方法と比較して、防御モデルでは35.9%、通常訓練されたモデルでは32.7%、成功率を大幅に向上させた。
論文 参考訳(メタデータ) (2020-12-31T08:40:42Z) - Dynamically Sampled Nonlocal Gradients for Stronger Adversarial Attacks [3.055601224691843]
深層ニューラルネットワークの脆弱性は、小さな、さらには知覚不能な摂動にも影響し、ディープラーニング研究の中心的なトピックとなっている。
脆弱性防御機構として動的に動的に非局所グラディエント蛍光(DSNGD)を提案する。
DSNGDベースの攻撃は平均35%高速であり、勾配降下型攻撃よりも0.9%から27.1%高い成功率を示した。
論文 参考訳(メタデータ) (2020-11-05T08:55:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。