Graph Disentangle Causal Model: Enhancing Causal Inference in Networked Observational Data
- URL: http://arxiv.org/abs/2412.03913v1
- Date: Thu, 05 Dec 2024 06:30:20 GMT
- Title: Graph Disentangle Causal Model: Enhancing Causal Inference in Networked Observational Data
- Authors: Binbin Hu, Zhicheng An, Zhengwei Wu, Ke Tu, Ziqi Liu, Zhiqiang Zhang, Jun Zhou, Yufei Feng, Jiawei Chen,
- Abstract summary: Estimating individual treatment effects (ITE) from observational data is a critical task across various domains.<n>We propose a novel framework called the textitGraph Disentangle Causal model (GDC) to conduct ITE estimation in the network setting.
- Score: 24.583216292149366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating individual treatment effects (ITE) from observational data is a critical task across various domains. However, many existing works on ITE estimation overlook the influence of hidden confounders, which remain unobserved at the individual unit level. To address this limitation, researchers have utilized graph neural networks to aggregate neighbors' features to capture the hidden confounders and mitigate confounding bias by minimizing the discrepancy of confounder representations between the treated and control groups. Despite the success of these approaches, practical scenarios often treat all features as confounders and involve substantial differences in feature distributions between the treated and control groups. Confusing the adjustment and confounder and enforcing strict balance on the confounder representations could potentially undermine the effectiveness of outcome prediction. To mitigate this issue, we propose a novel framework called the \textit{Graph Disentangle Causal model} (GDC) to conduct ITE estimation in the network setting. GDC utilizes a causal disentangle module to separate unit features into adjustment and confounder representations. Then we design a graph aggregation module consisting of three distinct graph aggregators to obtain adjustment, confounder, and counterfactual confounder representations. Finally, a causal constraint module is employed to enforce the disentangled representations as true causal factors. The effectiveness of our proposed method is demonstrated by conducting comprehensive experiments on two networked datasets.
Related papers
- Fair Deepfake Detectors Can Generalize [51.21167546843708]
We show that controlling for confounders (data distribution and model capacity) enables improved generalization via fairness interventions.<n>Motivated by this insight, we propose Demographic Attribute-insensitive Intervention Detection (DAID), a plug-and-play framework composed of: i) Demographic-aware data rebalancing, which employs inverse-propensity weighting and subgroup-wise feature normalization to neutralize distributional biases; and ii) Demographic-agnostic feature aggregation, which uses a novel alignment loss to suppress sensitive-attribute signals.<n>DAID consistently achieves superior performance in both fairness and generalization compared to several state-of-the-art
arXiv Detail & Related papers (2025-07-03T14:10:02Z) - Empowering Vision Transformers with Multi-Scale Causal Intervention for Long-Tailed Image Classification [12.122203089278738]
Causal inference has emerged as a promising approach to mitigate long-tail classification by handling the biases introduced by class imbalance.<n>This paper investigates the influence of existing causal models on CNNs and ViT variants.<n>It proposes TSCNet, a two-stage causal modeling method to discover fine-grained causal associations.
arXiv Detail & Related papers (2025-05-13T02:23:55Z) - Model-Based Inference and Experimental Design for Interference Using Partial Network Data [4.76518127830168]
We present a framework for the estimation and inference of treatment effect adjustments using partial network data.
We illustrate procedures to assign treatments using only partial network data.
We validate our approach using simulated experiments on observed graphs with applications to information diffusion in India and Malawi.
arXiv Detail & Related papers (2024-06-17T17:27:18Z) - Estimation of individual causal effects in network setup for multiple
treatments [4.53340898566495]
We study the problem of estimation of Individual Treatment Effects (ITE) in the context of multiple treatments and observational data.
We employ Graph Convolutional Networks (GCN) to learn a shared representation of the confounders.
Our approach utilizes separate neural networks to infer potential outcomes for each treatment.
arXiv Detail & Related papers (2023-12-18T06:07:45Z) - DDG-Net: Discriminability-Driven Graph Network for Weakly-supervised
Temporal Action Localization [40.521076622370806]
We propose Discriminability-Driven Graph Network (DDG-Net), which explicitly models ambiguous snippets and discriminative snippets with well-designed connections.
Experiments on THUMOS14 and ActivityNet1.2 benchmarks demonstrate the effectiveness of DDG-Net.
arXiv Detail & Related papers (2023-07-31T05:48:39Z) - CAFIN: Centrality Aware Fairness inducing IN-processing for Unsupervised Representation Learning on Graphs [10.042608422528392]
We propose CAFIN, a centrality-aware fairness-inducing framework to tune the representations generated by existing frameworks.
We deploy it on GraphSAGE and showcase its efficacy on two downstream tasks - Node Classification and Link Prediction.
arXiv Detail & Related papers (2023-04-10T05:40:09Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z) - Understanding Adversarial Examples from the Mutual Influence of Images
and Perturbations [83.60161052867534]
We analyze adversarial examples by disentangling the clean images and adversarial perturbations, and analyze their influence on each other.
Our results suggest a new perspective towards the relationship between images and universal perturbations.
We are the first to achieve the challenging task of a targeted universal attack without utilizing original training data.
arXiv Detail & Related papers (2020-07-13T05:00:09Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.