MT3DNet: Multi-Task learning Network for 3D Surgical Scene Reconstruction
- URL: http://arxiv.org/abs/2412.03928v2
- Date: Wed, 11 Dec 2024 21:06:05 GMT
- Title: MT3DNet: Multi-Task learning Network for 3D Surgical Scene Reconstruction
- Authors: Mithun Parab, Pranay Lendave, Jiyoung Kim, Thi Quynh Dan Nguyen, Palash Ingle,
- Abstract summary: In image-assisted minimally invasive surgeries (MIS), understanding surgical scenes is vital for real-time feedback to surgeons.
The challenge lies in accurately detecting, segmenting, and estimating the depth of surgical scenes depicted in high-resolution images.
A novel Multi-Task Learning (MTL) network is proposed for performing these tasks concurrently.
- Score: 0.0
- License:
- Abstract: In image-assisted minimally invasive surgeries (MIS), understanding surgical scenes is vital for real-time feedback to surgeons, skill evaluation, and improving outcomes through collaborative human-robot procedures. Within this context, the challenge lies in accurately detecting, segmenting, and estimating the depth of surgical scenes depicted in high-resolution images, while simultaneously reconstructing the scene in 3D and providing segmentation of surgical instruments along with detection labels for each instrument. To address this challenge, a novel Multi-Task Learning (MTL) network is proposed for performing these tasks concurrently. A key aspect of this approach involves overcoming the optimization hurdles associated with handling multiple tasks concurrently by integrating a Adversarial Weight Update into the MTL framework, the proposed MTL model achieves 3D reconstruction through the integration of segmentation, depth estimation, and object detection, thereby enhancing the understanding of surgical scenes, which marks a significant advancement compared to existing studies that lack 3D capabilities. Comprehensive experiments on the EndoVis2018 benchmark dataset underscore the adeptness of the model in efficiently addressing all three tasks, demonstrating the efficacy of the proposed techniques.
Related papers
- Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
Large Spatial Model (LSM) processes unposed RGB images directly into semantic radiance fields.
LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation.
It can generate versatile label maps by interacting with language at novel viewpoints.
arXiv Detail & Related papers (2024-10-24T17:54:42Z) - A Review of 3D Reconstruction Techniques for Deformable Tissues in Robotic Surgery [8.909938295090827]
NeRF-based techniques have recently garnered attention for the ability to reconstruct scenes implicitly.
On the other hand, 3D-GS represents scenes explicitly using 3D Gaussians and projects them onto a 2D plane as a replacement for the complex volume rendering in NeRF.
This work explores and reviews state-of-the-art (SOTA) approaches, discussing their innovations and implementation principles.
arXiv Detail & Related papers (2024-08-08T12:51:23Z) - Discriminative Hamiltonian Variational Autoencoder for Accurate Tumor Segmentation in Data-Scarce Regimes [2.8498944632323755]
We propose an end-to-end hybrid architecture for medical image segmentation.
We use Hamiltonian Variational Autoencoders (HVAE) and a discriminative regularization to improve the quality of generated images.
Our architecture operates on a slice-by-slice basis to segment 3D volumes, capitilizing on the richly augmented dataset.
arXiv Detail & Related papers (2024-06-17T15:42:08Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - Joint 2D-3D Multi-Task Learning on Cityscapes-3D: 3D Detection,
Segmentation, and Depth Estimation [11.608682595506354]
TaskPrompter presents an innovative multi-task prompting framework.
It unifies the learning of (i) task-generic representations, (ii) task-specific representations, and (iii) cross-task interactions.
New benchmark requires the multi-task model to concurrently generate predictions for monocular 3D vehicle detection, semantic segmentation, and monocular depth estimation.
arXiv Detail & Related papers (2023-04-03T13:41:35Z) - CholecTriplet2022: Show me a tool and tell me the triplet -- an
endoscopic vision challenge for surgical action triplet detection [41.66666272822756]
This paper presents the CholecTriplet2022 challenge, which extends surgical action triplet modeling from recognition to detection.
It includes weakly-supervised bounding box localization of every visible surgical instrument (or tool) as the key actors, and the modeling of each tool-activity in the form of instrument, verb, target> triplet.
arXiv Detail & Related papers (2023-02-13T11:53:14Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
This paper presents CholecTriplet 2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos.
We present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge.
A total of 4 baseline methods and 19 new deep learning algorithms are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%.
arXiv Detail & Related papers (2022-04-10T18:51:55Z) - Multimodal Semantic Scene Graphs for Holistic Modeling of Surgical
Procedures [70.69948035469467]
We take advantage of the latest computer vision methodologies for generating 3D graphs from camera views.
We then introduce the Multimodal Semantic Graph Scene (MSSG) which aims at providing unified symbolic and semantic representation of surgical procedures.
arXiv Detail & Related papers (2021-06-09T14:35:44Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z) - AP-MTL: Attention Pruned Multi-task Learning Model for Real-time
Instrument Detection and Segmentation in Robot-assisted Surgery [23.33984309289549]
Training a real-time robotic system for the detection and segmentation of high-resolution images provides a challenging problem with the limited computational resource.
We develop a novel end-to-end trainable real-time Multi-Task Learning model with weight-shared encoder and task-aware detection and segmentation decoders.
Our model significantly outperforms state-of-the-art segmentation and detection models, including best-performed models in the challenge.
arXiv Detail & Related papers (2020-03-10T14:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.