論文の概要: A Framework For Image Synthesis Using Supervised Contrastive Learning
- arxiv url: http://arxiv.org/abs/2412.03957v1
- Date: Thu, 05 Dec 2024 08:15:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:42:23.017174
- Title: A Framework For Image Synthesis Using Supervised Contrastive Learning
- Title(参考訳): 教師付きコントラスト学習を用いた画像合成フレームワーク
- Authors: Yibin Liu, Jianyu Zhang, Li Zhang, Shijian Li, Gang Pan,
- Abstract要約: テキスト・ツー・イメージ(T2I)生成は、テキスト記述に対応する現実的な画像を作成することを目的としている。
本稿では,ラベルガイド付き教師付きコントラスト学習による内部モーダル対応と内部モーダル対応の両面を活用したフレームワークを提案する。
我々は、単一オブジェクトデータセットCUBと多オブジェクトデータセットCOCOの2つの新しいT2I GANのフレームワークを実証する。
- 参考スコア(独自算出の注目度): 14.016543383212706
- License:
- Abstract: Text-to-image (T2I) generation aims at producing realistic images corresponding to text descriptions. Generative Adversarial Network (GAN) has proven to be successful in this task. Typical T2I GANs are 2 phase methods that first pretrain an inter-modal representation from aligned image-text pairs and then use GAN to train image generator on that basis. However, such representation ignores the inner-modal semantic correspondence, e.g. the images with same label. The semantic label in priory describes the inherent distribution pattern with underlying cross-image relationships, which is supplement to the text description for understanding the full characteristics of image. In this paper, we propose a framework leveraging both inter- and inner-modal correspondence by label guided supervised contrastive learning. We extend the T2I GANs to two parameter-sharing contrast branches in both pretraining and generation phases. This integration effectively clusters the semantically similar image-text pair representations, thereby fostering the generation of higher-quality images. We demonstrate our framework on four novel T2I GANs by both single-object dataset CUB and multi-object dataset COCO, achieving significant improvements in the Inception Score (IS) and Frechet Inception Distance (FID) metrics of imagegeneration evaluation. Notably, on more complex multi-object COCO, our framework improves FID by 30.1%, 27.3%, 16.2% and 17.1% for AttnGAN, DM-GAN, SSA-GAN and GALIP, respectively. We also validate our superiority by comparing with other label guided T2I GANs. The results affirm the effectiveness and competitiveness of our approach in advancing the state-of-the-art GAN for T2I generation
- Abstract(参考訳): テキスト・ツー・イメージ(T2I)生成は、テキスト記述に対応する現実的な画像を作成することを目的としている。
GAN(Generative Adversarial Network)はこの課題で成功している。
典型的なT2I GANは、2つのフェーズメソッドであり、まず、アライメントされた画像テキストペアからモーダル間表現を事前トレーニングし、次にGANを使用して画像ジェネレータをトレーニングする。
しかし、そのような表現は内部モードのセマンティック対応を無視し、例えば同じラベルの画像を無視する。
先行のセマンティックラベルは、画像の完全な特徴を理解するためのテキスト記述を補完する、背景となるクロスイメージ関係を持つ固有の分布パターンを記述する。
本稿では,ラベルガイド付き教師付きコントラスト学習により,モーダル間の相互対応と内部対応を両立する枠組みを提案する。
我々はT2I GANを2つのパラメータ共有コントラストブランチにプリトレーニングおよび生成フェーズで拡張する。
この統合は、意味的に類似した画像とテキストのペア表現を効果的にクラスタリングすることで、高品質な画像の生成を促進する。
我々は,単目的データセットCUBと多目的データセットCOCOによる4つの新しいT2I GANの枠組みを実証し,画像生成評価のインセプションスコア(IS)とFrechet Inception Distance(FID)の指標を大幅に改善した。
特に、より複雑なマルチオブジェクトCOCOでは、AttnGAN、DM-GAN、SSA-GAN、GALIPのFIDを30.1%、27.3%、16.2%、および17.1%改善しています。
また,他のラベルガイドT2I GANと比較し,優位性を検証した。
The results affirm the effective and competitiveness of our approach in advance the State-of-the-the-art GAN for T2I generation。
関連論文リスト
- DAFT-GAN: Dual Affine Transformation Generative Adversarial Network for Text-Guided Image Inpainting [2.656795553429629]
そこで本研究では,2つのアフィン変換生成逆数ネットワーク(DAFT-GAN)を提案する。
提案手法は, 定性評価と定量的評価の両方において, 既存のGANモデルよりも優れている。
論文 参考訳(メタデータ) (2024-08-09T09:28:42Z) - CoBIT: A Contrastive Bi-directional Image-Text Generation Model [72.1700346308106]
CoBITは、新しいユニコーダ・デコーダ構造を採用しており、これは1つのフレームワークで3つの事前学習対象を統一しようとするものである。
CoBITは画像理解、画像テキスト理解(検索、キャプション、VQA、SNLI-VE)、テキストベースのコンテンツ生成、特にゼロショットシナリオにおいて優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-03-23T17:24:31Z) - Towards Better Text-Image Consistency in Text-to-Image Generation [15.735515302139335]
私たちはSemantic similarity Distance(SSD)と呼ばれる新しいCLIPベースのメトリクスを開発した。
さらに,異なる粒度で意味情報を融合できる並列深層核生成適応ネットワーク (PDF-GAN) を設計する。
我々のPDF-GANは、CUBおよびCOCOデータセットの良好な画像品質を維持しながら、テキスト画像の一貫性を著しく向上させることができる。
論文 参考訳(メタデータ) (2022-10-27T07:47:47Z) - COTS: Collaborative Two-Stream Vision-Language Pre-Training Model for
Cross-Modal Retrieval [59.15034487974549]
画像テキスト検索のための新しいコラボレーティブな2ストリームビジョン言語事前学習モデルCOTSを提案する。
我々のCOTSは,2ストリーム方式の中で最も高い性能を達成し,推論の速度は10,800倍に向上した。
重要なことは、我々のCOTSはテキストからビデオへの検索にも適用でき、広く使われているMSR-VTTデータセットに新たな最先端技術をもたらすことである。
論文 参考訳(メタデータ) (2022-04-15T12:34:47Z) - Cycle-Consistent Inverse GAN for Text-to-Image Synthesis [101.97397967958722]
本稿では,テキスト・ツー・イメージ・ジェネレーションとテキスト・ガイドによる画像操作を行うために,Cycle-Consistent Inverse GANの統一フレームワークを提案する。
我々は、GANの反転モデルを学び、画像をGANの潜在空間に変換し、各画像の反転潜在符号を得る。
テキスト誘導最適化モジュールでは、反転潜在符号を最適化することにより、所望のセマンティック属性を持つ画像を生成する。
論文 参考訳(メタデータ) (2021-08-03T08:38:16Z) - Improving Text-to-Image Synthesis Using Contrastive Learning [4.850820365312369]
本稿では,合成画像の品質向上とセマンティック一貫性向上のための対照的な学習手法を提案する。
CUBとCOCOのデータセットを用いた2つの一般的なテキスト・画像合成モデルであるAttnGANとDM-GANに対するアプローチを評価する。
論文 参考訳(メタデータ) (2021-07-06T06:43:31Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Text to Image Generation with Semantic-Spatial Aware GAN [41.73685713621705]
テキストから画像生成(T2I)モデルは、テキスト記述と意味的に一致するフォトリアリズム画像を生成することを目的としている。
本稿では,テキストエンコーダがより良いテキスト情報を活用できるように,エンドツーエンドで訓練された新しいフレームワークSemantic-Spatial Aware GANを提案する。
論文 参考訳(メタデータ) (2021-04-01T15:48:01Z) - DF-GAN: A Simple and Effective Baseline for Text-to-Image Synthesis [80.54273334640285]
本稿では,異なる生成装置間の絡み合わずに高解像度画像を直接合成する,新しい1段階のテキスト・ツー・イメージバックボーンを提案する。
また,Matching-Aware Gradient Penalty と One-Way Output を組み合わせた新たなターゲット認識識別器を提案する。
現在の最先端手法と比較して,提案するDF-GANはよりシンプルだが,現実的およびテキストマッチング画像の合成には効率的である。
論文 参考訳(メタデータ) (2020-08-13T12:51:17Z) - TIME: Text and Image Mutual-Translation Adversarial Networks [55.1298552773457]
テキストと画像相互変換対応ネットワーク(TIME)を提案する。
TIMEは、T2IジェネレータGと画像キャプション識別器Dをジェネレータネットワークフレームワークで学習する。
実験では、TIMEはCUBおよびMS-COCOデータセット上での最先端(SOTA)性能を達成する。
論文 参考訳(メタデータ) (2020-05-27T06:40:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。