HyperDefect-YOLO: Enhance YOLO with HyperGraph Computation for Industrial Defect Detection
- URL: http://arxiv.org/abs/2412.03969v1
- Date: Thu, 05 Dec 2024 08:38:01 GMT
- Title: HyperDefect-YOLO: Enhance YOLO with HyperGraph Computation for Industrial Defect Detection
- Authors: Zuo Zuo, Jiahao Dong, Yue Gao, Zongze Wu,
- Abstract summary: HD-YOLO consists of Defect Aware Module (DAM) and Mixed Graph Network (MGNet) in the backbone.
HGANet combines hypergraph and attention mechanism to aggregate multi-scale features.
Cross-Scale Fusion (CSF) is proposed to adaptively fuse and handle features instead of simple concatenation and convolution.
- Score: 12.865603495310328
- License:
- Abstract: In the manufacturing industry, defect detection is an essential but challenging task aiming to detect defects generated in the process of production. Though traditional YOLO models presents a good performance in defect detection, they still have limitations in capturing high-order feature interrelationships, which hurdles defect detection in the complex scenarios and across the scales. To this end, we introduce hypergraph computation into YOLO framework, dubbed HyperDefect-YOLO (HD-YOLO), to improve representative ability and semantic exploitation. HD-YOLO consists of Defect Aware Module (DAM) and Mixed Graph Network (MGNet) in the backbone, which specialize for perception and extraction of defect features. To effectively aggregate multi-scale features, we propose HyperGraph Aggregation Network (HGANet) which combines hypergraph and attention mechanism to aggregate multi-scale features. Cross-Scale Fusion (CSF) is proposed to adaptively fuse and handle features instead of simple concatenation and convolution. Finally, we propose Semantic Aware Module (SAM) in the neck to enhance semantic exploitation for accurately localizing defects with different sizes in the disturbed background. HD-YOLO undergoes rigorous evaluation on public HRIPCB and NEU-DET datasets with significant improvements compared to state-of-the-art methods. We also evaluate HD-YOLO on self-built MINILED dataset collected in real industrial scenarios to demonstrate the effectiveness of the proposed method. The source codes are at https://github.com/Jay-zzcoder/HD-YOLO.
Related papers
- HYATT-Net is Grand: A Hybrid Attention Network for Performant Anatomical Landmark Detection [17.290208035331734]
Anatomical landmark detection (ALD) from a medical image is crucial for a wide array of clinical applications.
We propose a novel hybrid architecture that integrates CNNs and Transformers.
Experiments on five diverse datasets demonstrate state-of-the-art performance, surpassing existing methods in accuracy, robustness, and efficiency.
arXiv Detail & Related papers (2024-12-09T13:58:00Z) - Scalable and Effective Negative Sample Generation for Hyperedge Prediction [55.9298019975967]
Hyperedge prediction is crucial for understanding complex multi-entity interactions in web-based applications.
Traditional methods often face difficulties in generating high-quality negative samples due to imbalance between positive and negative instances.
We present the scalable and effective negative sample generation for Hyperedge Prediction (SEHP) framework, which utilizes diffusion models to tackle these challenges.
arXiv Detail & Related papers (2024-11-19T09:16:25Z) - Hyper-YOLO: When Visual Object Detection Meets Hypergraph Computation [74.65906322148997]
We introduce a new object detection method that integrates hypergraph computations to capture the complex high-order correlations among visual features.
Hyper-YOLO significantly outperforms the advanced YOLOv8-N and YOLOv9T with 12% $textval$ and 9% $APMoonLab improvements.
arXiv Detail & Related papers (2024-08-09T01:21:15Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
YOLOs have emerged as the predominant paradigm in the field of real-time object detection.
The reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs.
We introduce the holistic efficiency-accuracy driven model design strategy for YOLOs.
arXiv Detail & Related papers (2024-05-23T11:44:29Z) - MODIPHY: Multimodal Obscured Detection for IoT using PHantom Convolution-Enabled Faster YOLO [10.183459286746196]
We introduce YOLO Phantom, one of the smallest YOLO models ever conceived.
YOLO Phantom achieves comparable accuracy to the latest YOLOv8n model while simultaneously reducing both parameters and model size.
Its real-world efficacy is demonstrated on an IoT platform with advanced low-light and RGB cameras, seamlessly connecting to an AWS-based notification endpoint.
arXiv Detail & Related papers (2024-02-12T18:56:53Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
We introduce YOLO-World, an innovative approach that enhances YOLO with open-vocabulary detection capabilities.
Our method excels in detecting a wide range of objects in a zero-shot manner with high efficiency.
YOLO-World achieves 35.4 AP with 52.0 FPS on V100, which outperforms many state-of-the-art methods in terms of both accuracy and speed.
arXiv Detail & Related papers (2024-01-30T18:59:38Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection [63.36722419180875]
We provide an efficient and performant object detector, termed YOLO-MS.
We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.
Our work can also serve as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - DAMO-YOLO : A Report on Real-Time Object Detection Design [19.06518351354291]
We present a fast and accurate object detection method dubbed DAMO-YOLO, which achieves higher performance than the state-of-the-art YOLO series.
We use MAE-NAS, a method guided by the principle of maximum entropy, to search our detection backbone.
In the design of necks and heads, we follow the rule of large neck, small head''
arXiv Detail & Related papers (2022-11-23T17:59:12Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - LF-YOLO: A Lighter and Faster YOLO for Weld Defect Detection of X-ray
Image [7.970559381165446]
We propose a weld defect detection method based on convolution neural network (CNN), namely Lighter and Faster YOLO (LF-YOLO)
To improve the performance of detection network, we propose an efficient feature extraction (EFE) module.
Experimental results show that our weld defect network achieves satisfactory balance between performance and consumption, and reaches 92.9 mAP50 with 61.5 FPS.
arXiv Detail & Related papers (2021-10-28T12:19:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.