Epoch-based Application of Problem-Aware Operators in a Multiobjective Memetic Algorithm for Portfolio Optimization
- URL: http://arxiv.org/abs/2412.03981v1
- Date: Thu, 05 Dec 2024 08:57:42 GMT
- Title: Epoch-based Application of Problem-Aware Operators in a Multiobjective Memetic Algorithm for Portfolio Optimization
- Authors: Feijoo Colomine Durán, Carlos Cotta, Antonio J. Fernández-Leiva,
- Abstract summary: We consider the issue of intensification/diversification balance in the context of a memetic algorithm for the multiobjective optimization of investment portfolios with cardinality constraints.
We have conducted a sensibility analysis to determine in which phases of the search the application of these operators leads to better results.
Our findings indicate that the resulting algorithm is quite robust in terms of parameterization from the point of view of this problem-specific indicator.
- Score: 0.0
- License:
- Abstract: We consider the issue of intensification/diversification balance in the context of a memetic algorithm for the multiobjective optimization of investment portfolios with cardinality constraints. We approach this issue in this work by considering the selective application of knowledge-augmented operators (local search and a memory of elite solutions) based on the search epoch in which the algorithm finds itself, hence alternating between unbiased search (guided uniquely by the built-in search mechanics of the algorithm) and focused search (intensified by the use of the problem-aware operators). These operators exploit Sharpe index (a measure of the relationship between return and risk) as a source of problem knowledge. We have conducted a sensibility analysis to determine in which phases of the search the application of these operators leads to better results. Our findings indicate that the resulting algorithm is quite robust in terms of parameterization from the point of view of this problem-specific indicator. Furthermore, it is shown that not only can other non-memetic counterparts be outperformed, but that there is a range of parameters in which the MA is also competitive when not better in terms of standard multiobjective performance indicators.
Related papers
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Illuminating the Diversity-Fitness Trade-Off in Black-Box Optimization [9.838618121102053]
In real-world applications, users often favor structurally diverse design choices over one high-quality solution.
This paper presents a fresh perspective on this challenge by considering the problem of identifying a fixed number of solutions with a pairwise distance above a specified threshold.
arXiv Detail & Related papers (2024-08-29T09:55:55Z) - Modeling Local Search Metaheuristics Using Markov Decision Processes [0.0]
We introduce a theoretical framework based on Markov Decision Processes (MDP) for analyzing local search metaheuristics.
This framework not only helps in providing convergence results for individual algorithms, but also provides an explicit characterization of the exploration-exploitation tradeoff.
arXiv Detail & Related papers (2024-07-29T11:28:30Z) - A Survey of Meta-features Used for Automated Selection of Algorithms for Black-box Single-objective Continuous Optimization [4.173197621837912]
We conduct an overview of the key contributions to algorithm selection in the field of single-objective continuous black-box optimization.
We study machine learning models for automated algorithm selection, configuration, and performance prediction.
arXiv Detail & Related papers (2024-06-08T11:11:14Z) - Evaluating the Practicality of Quantum Optimization Algorithms for
Prototypical Industrial Applications [44.88678858860675]
We investigate the application of the quantum approximate optimization algorithm (QAOA) and the quantum adiabatic algorithm (QAA) to the solution of a prototypical model in this field.
We compare the performance of these two algorithms in terms of solution quality, using selected evaluation metrics.
arXiv Detail & Related papers (2023-11-20T09:09:55Z) - Local Optima Correlation Assisted Adaptive Operator Selection [4.983846689106013]
We propose to empirically analyse the relationship between operators in terms of the correlation between their local optima.
Based on this newly proposed local optima correlation metric, we propose a novel approach for adaptively selecting among the operators during the search process.
arXiv Detail & Related papers (2023-05-03T13:25:41Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
We discuss the key related theoretical aspects, with a particular focus on the fairness properties of primal optima and associated risk allocations.
The algorithms we provide allow for learning primals, optima for the dual representation and corresponding fair risk allocations.
arXiv Detail & Related papers (2023-02-02T22:16:49Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
optimization of the Area Under the Precision-Recall Curve (AUPRC) is a crucial problem for machine learning.
In this work, we present the first trial in the single-dependent generalization of AUPRC optimization.
Experiments on three image retrieval datasets on speak to the effectiveness and soundness of our framework.
arXiv Detail & Related papers (2022-09-27T09:06:37Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
We study the problem of efficient exploration in order to learn an accurate model of an environment, modeled as a Markov decision process (MDP)
We show that our Markov-based algorithm outperforms both our original algorithm and the maximum entropy algorithm in the small sample regime.
arXiv Detail & Related papers (2020-03-06T16:17:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.