Modeling Local Search Metaheuristics Using Markov Decision Processes
- URL: http://arxiv.org/abs/2407.19904v1
- Date: Mon, 29 Jul 2024 11:28:30 GMT
- Title: Modeling Local Search Metaheuristics Using Markov Decision Processes
- Authors: Rubén Ruiz-Torrubiano,
- Abstract summary: We introduce a theoretical framework based on Markov Decision Processes (MDP) for analyzing local search metaheuristics.
This framework not only helps in providing convergence results for individual algorithms, but also provides an explicit characterization of the exploration-exploitation tradeoff.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Local search metaheuristics like tabu search or simulated annealing are popular heuristic optimization algorithms for finding near-optimal solutions for combinatorial optimization problems. However, it is still challenging for researchers and practitioners to analyze their behaviour and systematically choose one over a vast set of possible metaheuristics for the particular problem at hand. In this paper, we introduce a theoretical framework based on Markov Decision Processes (MDP) for analyzing local search metaheuristics. This framework not only helps in providing convergence results for individual algorithms, but also provides an explicit characterization of the exploration-exploitation tradeoff and a theory-grounded guidance for practitioners for choosing an appropriate metaheuristic for the problem at hand. We present this framework in detail and show how to apply it in the case of hill climbing and the simulated annealing algorithm.
Related papers
- LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - A Survey of Meta-features Used for Automated Selection of Algorithms for Black-box Single-objective Continuous Optimization [4.173197621837912]
We conduct an overview of the key contributions to algorithm selection in the field of single-objective continuous black-box optimization.
We study machine learning models for automated algorithm selection, configuration, and performance prediction.
arXiv Detail & Related papers (2024-06-08T11:11:14Z) - Doubly Stochastic Matrix Models for Estimation of Distribution
Algorithms [2.28438857884398]
We explore the use of Doubly Matrices (DSM) for matching and assignment nature permutation problems.
Specifically, we adopt the framework of estimation of distribution algorithms and compare DSMs to some existing proposals for permutation problems.
Preliminary experiments on instances of the quadratic assignment problem validate this line of research and show that DSMs may obtain very competitive results.
arXiv Detail & Related papers (2023-04-05T14:36:48Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Learning to Control Local Search for Combinatorial Optimization [4.243592852049962]
A zoo of generic as well as problem-specific variants of local search is commonly used to compute approximate solutions.
In this paper we identify three independent algorithmic aspects of such local search algorithms and formalize their sequential selection over an optimization process.
We show that NeuroLS is able to outperform both, well-known general purpose local search controllers from Operations Research as well as latest machine learning-based approaches.
arXiv Detail & Related papers (2022-06-27T10:48:56Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
This paper presents a critical analysis on the incorporation of algorithms based on neural networks into the classical optimization framework.
A comprehensive study is carried out to analyse the fundamental aspects of such algorithms, including performance, transferability, computational cost and to larger-sized instances.
arXiv Detail & Related papers (2022-05-03T07:54:56Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
The proposed algorithm is based on solving a set of surrogate problems defined by models of the real one.
Our algorithm also performs a meta-search for optimal surrogate models and navigation strategies for the optimization landscape.
arXiv Detail & Related papers (2021-03-19T11:18:03Z) - A Survey On (Stochastic Fractal Search) Algorithm [0.0]
This paper presents a metaheuristic algorithm called Fractal Search, inspired by the natural phenomenon of growth based on a mathematical concept called the fractal.
This paper also focuses on the steps and some example applications of engineering design optimisation problems commonly used in the literature being applied to the proposed algorithm.
arXiv Detail & Related papers (2021-01-25T22:44:04Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
Simple algorithms have been shown to lead to good empirical results in many contexts.
Several works have pursued rigorous analytical justification for studying non optimization problems.
A key insight in these analyses is that perturbations play a critical role in allowing local descent algorithms.
arXiv Detail & Related papers (2020-03-31T16:54:22Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.