Exploring Fully Convolutional Networks for the Segmentation of Hyperspectral Imaging Applied to Advanced Driver Assistance Systems
- URL: http://arxiv.org/abs/2412.03982v1
- Date: Thu, 05 Dec 2024 08:58:25 GMT
- Title: Exploring Fully Convolutional Networks for the Segmentation of Hyperspectral Imaging Applied to Advanced Driver Assistance Systems
- Authors: Jon Gutiérrez-Zaballa, Koldo Basterretxea, Javier Echanobe, M. Victoria Martínez, Inés del Campo,
- Abstract summary: We explore the use of hyperspectral imaging (HSI) in Advanced Driver Assistance Systems (ADAS)
This paper describes some experimental results of the application of fully convolutional networks (FCN) to the image segmentation of HSI for ADAS applications.
We use the HSI-Drive v1.1 dataset, which provides a set of labelled images recorded in real driving conditions with a small-size snapshot NIR-HSI camera.
- Score: 1.8874331450711404
- License:
- Abstract: Advanced Driver Assistance Systems (ADAS) are designed with the main purpose of increasing the safety and comfort of vehicle occupants. Most of current computer vision-based ADAS perform detection and tracking tasks quite successfully under regular conditions, but are not completely reliable, particularly under adverse weather and changing lighting conditions, neither in complex situations with many overlapping objects. In this work we explore the use of hyperspectral imaging (HSI) in ADAS on the assumption that the distinct near infrared (NIR) spectral reflectances of different materials can help to better separate the objects in a driving scene. In particular, this paper describes some experimental results of the application of fully convolutional networks (FCN) to the image segmentation of HSI for ADAS applications. More specifically, our aim is to investigate to what extent the spatial features codified by convolutional filters can be helpful to improve the performance of HSI segmentation systems. With that aim, we use the HSI-Drive v1.1 dataset, which provides a set of labelled images recorded in real driving conditions with a small-size snapshot NIR-HSI camera. Finally, we analyze the implementability of such a HSI segmentation system by prototyping the developed FCN model together with the necessary hyperspectral cube preprocessing stage and characterizing its performance on an MPSoC.
Related papers
- FE-UNet: Frequency Domain Enhanced U-Net with Segment Anything Capability for Versatile Image Segmentation [50.9040167152168]
We experimentally quantify the contrast sensitivity function of CNNs and compare it with that of the human visual system.
We propose the Wavelet-Guided Spectral Pooling Module (WSPM) to enhance and balance image features across the frequency domain.
To further emulate the human visual system, we introduce the Frequency Domain Enhanced Receptive Field Block (FE-RFB)
We develop FE-UNet, a model that utilizes SAM2 as its backbone and incorporates Hiera-Large as a pre-trained block.
arXiv Detail & Related papers (2025-02-06T07:24:34Z) - On-chip Hyperspectral Image Segmentation with Fully Convolutional Networks for Scene Understanding in Autonomous Driving [1.696186398088554]
spectral reflectance of different objects in a driving scene beyond the visible spectrum can offer additional information.
In this work we explore the use of snapshot, video-rate hyperspectral imaging (HSI) cameras in advanced driver assistance systems (ADAS)
We analyze to what extent the spatial features codified by standard, tiny fully convolutional network (FCN) models can improve the performance of HSI segmentation systems.
arXiv Detail & Related papers (2024-11-28T17:10:50Z) - Learning to Find Missing Video Frames with Synthetic Data Augmentation:
A General Framework and Application in Generating Thermal Images Using RGB
Cameras [0.0]
This paper addresses the issue of missing data due to sensor frame rate mismatches.
We propose using conditional generative adversarial networks (cGANs) to create synthetic yet realistic thermal imagery.
arXiv Detail & Related papers (2024-02-29T23:52:15Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - ASY-VRNet: Waterway Panoptic Driving Perception Model based on Asymmetric Fair Fusion of Vision and 4D mmWave Radar [7.2865477881451755]
Asymmetric Fair Fusion (AFF) modules designed to efficiently interact with independent features from both visual and radar modalities.
ASY-VRNet model processes image and radar features based on irregular super-pixel point sets.
Compared to other lightweight models, ASY-VRNet achieves state-of-the-art performance in object detection, semantic segmentation, and drivable-area segmentation.
arXiv Detail & Related papers (2023-08-20T14:53:27Z) - Attention Guided Network for Salient Object Detection in Optical Remote
Sensing Images [16.933770557853077]
salient object detection in optical remote sensing images (RSI-SOD) is a very difficult task.
We propose a novel Attention Guided Network (AGNet) for SOD in optical RSIs, including position enhancement stage and detail refinement stage.
AGNet achieves competitive performance compared to other state-of-the-art methods.
arXiv Detail & Related papers (2022-07-05T01:01:03Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
This paper focuses on how to embed the high-dimensional spatial-spectral information of hyperspectral (HS) images efficiently and effectively.
We formulate HS embedding as an approximation of the posterior distribution of a set of carefully-defined HS embedding events.
Then, we incorporate the proposed feature embedding scheme into a source-consistent super-resolution framework that is physically-interpretable.
Experiments over three common benchmark datasets demonstrate that PDE-Net achieves superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-30T06:59:01Z) - HerosNet: Hyperspectral Explicable Reconstruction and Optimal Sampling
Deep Network for Snapshot Compressive Imaging [41.91463343106411]
Hyperspectral imaging is an essential imaging modality for a wide range of applications, especially in remote sensing, agriculture, and medicine.
Inspired by existing hyperspectral cameras that are either slow, expensive, or bulky, reconstructing hyperspectral images (HSIs) from a low-budget snapshot measurement has drawn wide attention.
Recent deep unfolding networks (DUNs) for spectral snapshot sensing (SCI) have achieved remarkable success.
In this paper, we propose a novel Hyperspectral Explicable Reconstruction and Optimal Sampling deep Network for SCI, dubbed HerosNet, which includes several phases under the ISTA-unfolding framework.
arXiv Detail & Related papers (2021-12-12T13:42:49Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Hyperspectral Image Super-Resolution with Spectral Mixup and
Heterogeneous Datasets [99.92564298432387]
This work studies Hyperspectral image (HSI) super-resolution (SR)
HSI SR is characterized by high-dimensional data and a limited amount of training examples.
This exacerbates the undesirable behaviors of neural networks such as memorization and sensitivity to out-of-distribution samples.
arXiv Detail & Related papers (2021-01-19T12:19:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.