IF-MDM: Implicit Face Motion Diffusion Model for High-Fidelity Realtime Talking Head Generation
- URL: http://arxiv.org/abs/2412.04000v2
- Date: Tue, 10 Dec 2024 07:43:08 GMT
- Title: IF-MDM: Implicit Face Motion Diffusion Model for High-Fidelity Realtime Talking Head Generation
- Authors: Sejong Yang, Seoung Wug Oh, Yang Zhou, Seon Joo Kim,
- Abstract summary: Implicit Face Motion Diffusion Model (IF-MDM) employs implicit motion to encode human faces into appearance-aware compressed facial latents.<n>IF-MDM supports real-time generation of 512x512 resolution videos at up to 45 frames per second (fps)
- Score: 40.29205415748199
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We introduce a novel approach for high-resolution talking head generation from a single image and audio input. Prior methods using explicit face models, like 3D morphable models (3DMM) and facial landmarks, often fall short in generating high-fidelity videos due to their lack of appearance-aware motion representation. While generative approaches such as video diffusion models achieve high video quality, their slow processing speeds limit practical application. Our proposed model, Implicit Face Motion Diffusion Model (IF-MDM), employs implicit motion to encode human faces into appearance-aware compressed facial latents, enhancing video generation. Although implicit motion lacks the spatial disentanglement of explicit models, which complicates alignment with subtle lip movements, we introduce motion statistics to help capture fine-grained motion information. Additionally, our model provides motion controllability to optimize the trade-off between motion intensity and visual quality during inference. IF-MDM supports real-time generation of 512x512 resolution videos at up to 45 frames per second (fps). Extensive evaluations demonstrate its superior performance over existing diffusion and explicit face models. The code will be released publicly, available alongside supplementary materials. The video results can be found on https://bit.ly/ifmdm_supplementary.
Related papers
- M2DAO-Talker: Harmonizing Multi-granular Motion Decoupling and Alternating Optimization for Talking-head Generation [65.08520614570288]
We reformulate talking head generation into a unified framework comprising video preprocessing, motion representation, and rendering reconstruction.<n>M2DAO-Talker achieves state-of-the-art performance, with the 2.43 dB PSNR improvement in generation quality and 0.64 gain in user-evaluated video realness.
arXiv Detail & Related papers (2025-07-11T04:48:12Z) - LLIA -- Enabling Low-Latency Interactive Avatars: Real-Time Audio-Driven Portrait Video Generation with Diffusion Models [17.858801012726445]
Diffusion-based models have gained wide adoption in the virtual human generation due to their outstanding expressiveness.<n>We present a novel audio-driven portrait video generation framework based on the diffusion model to address these challenges.<n>Our model achieves a maximum of 78 FPS at a resolution of 384x384 and 45 FPS at a resolution of 512x512, with an initial video generation latency of 140 ms and 215 ms, respectively.
arXiv Detail & Related papers (2025-06-06T07:09:07Z) - MoTrans: Customized Motion Transfer with Text-driven Video Diffusion Models [59.10171699717122]
MoTrans is a customized motion transfer method enabling video generation of similar motion in new context.
multimodal representations from recaptioned prompt and video frames promote the modeling of appearance.
Our method effectively learns specific motion pattern from singular or multiple reference videos.
arXiv Detail & Related papers (2024-12-02T10:07:59Z) - Efficient Video Diffusion Models via Content-Frame Motion-Latent Decomposition [124.41196697408627]
We propose content-motion latent diffusion model (CMD), a novel efficient extension of pretrained image diffusion models for video generation.
CMD encodes a video as a combination of a content frame (like an image) and a low-dimensional motion latent representation.
We generate the content frame by fine-tuning a pretrained image diffusion model, and we generate the motion latent representation by training a new lightweight diffusion model.
arXiv Detail & Related papers (2024-03-21T05:48:48Z) - VMC: Video Motion Customization using Temporal Attention Adaption for
Text-to-Video Diffusion Models [58.93124686141781]
Video Motion Customization (VMC) is a novel one-shot tuning approach crafted to adapt temporal attention layers within video diffusion models.
Our approach introduces a novel motion distillation objective using residual vectors between consecutive frames as a motion reference.
We validate our method against state-of-the-art video generative models across diverse real-world motions and contexts.
arXiv Detail & Related papers (2023-12-01T06:50:11Z) - LaMD: Latent Motion Diffusion for Image-Conditional Video Generation [63.34574080016687]
latent motion diffusion (LaMD) framework consists of a motion-decomposed video autoencoder and a diffusion-based motion generator.
LaMD generates high-quality videos on various benchmark datasets, including BAIR, Landscape, NATOPS, MUG and CATER-GEN.
arXiv Detail & Related papers (2023-04-23T10:32:32Z) - High-Fidelity and Freely Controllable Talking Head Video Generation [31.08828907637289]
We propose a novel model that produces high-fidelity talking head videos with free control over head pose and expression.
We introduce a novel motion-aware multi-scale feature alignment module to effectively transfer the motion without face distortion.
We evaluate our model on challenging datasets and demonstrate its state-of-the-art performance.
arXiv Detail & Related papers (2023-04-20T09:02:41Z) - DiffMesh: A Motion-aware Diffusion Framework for Human Mesh Recovery from Videos [20.895221536570627]
Human mesh recovery (HMR) provides rich human body information for various real-world applications.<n>Video-based approaches leverage temporal information to mitigate this issue.<n>We present DiffMesh, an innovative motion-aware Diffusion-like framework for video-based HMR.
arXiv Detail & Related papers (2023-03-23T16:15:18Z) - Latent Video Diffusion Models for High-Fidelity Long Video Generation [58.346702410885236]
We introduce lightweight video diffusion models using a low-dimensional 3D latent space.
We also propose hierarchical diffusion in the latent space such that longer videos with more than one thousand frames can be produced.
Our framework generates more realistic and longer videos than previous strong baselines.
arXiv Detail & Related papers (2022-11-23T18:58:39Z) - Human Motion Diffusion Model [35.05219668478535]
Motion Diffusion Model (MDM) is a transformer-based generative model for the human motion domain.
We show that our model is trained with lightweight resources and yet achieves state-of-the-art results on leading benchmarks for text-to-motion and action-to-motion.
arXiv Detail & Related papers (2022-09-29T16:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.