論文の概要: Mask of truth: model sensitivity to unexpected regions of medical images
- arxiv url: http://arxiv.org/abs/2412.04030v2
- Date: Sun, 08 Dec 2024 08:26:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 11:30:39.743167
- Title: Mask of truth: model sensitivity to unexpected regions of medical images
- Title(参考訳): 真実のマスク:医療画像の予期せぬ領域に対するモデル感度
- Authors: Théo Sourget, Michelle Hestbek-Møller, Amelia Jiménez-Sánchez, Jack Junchi Xu, Veronika Cheplygina,
- Abstract要約: 我々は、胸部X線と眼底画像の分類に畳み込みニューラルネットワーク(CNN)の能力に挑戦する。
マスク戦略に関わらず、PadデータセットでトレーニングされたすべてのモデルがランダムにAUC(Area Under the Curve)を得ることができることを示す。
また,Chaksuデータセットでは,非バイアスモデルに対する期待値に一致した結果が得られた。
- 参考スコア(独自算出の注目度): 0.9896218845636701
- License:
- Abstract: The development of larger models for medical image analysis has led to increased performance. However, it also affected our ability to explain and validate model decisions. Models can use non-relevant parts of images, also called spurious correlations or shortcuts, to obtain high performance on benchmark datasets but fail in real-world scenarios. In this work, we challenge the capacity of convolutional neural networks (CNN) to classify chest X-rays and eye fundus images while masking out clinically relevant parts of the image. We show that all models trained on the PadChest dataset, irrespective of the masking strategy, are able to obtain an Area Under the Curve (AUC) above random. Moreover, the models trained on full images obtain good performance on images without the region of interest (ROI), even superior to the one obtained on images only containing the ROI. We also reveal a possible spurious correlation in the Chaksu dataset while the performances are more aligned with the expectation of an unbiased model. We go beyond the performance analysis with the usage of the explainability method SHAP and the analysis of embeddings. We asked a radiology resident to interpret chest X-rays under different masking to complement our findings with clinical knowledge. Our code is available at https://github.com/TheoSourget/MMC_Masking and https://github.com/TheoSourget/MMC_Masking_EyeFundus
- Abstract(参考訳): 医用画像解析のためのより大きなモデルの開発により、性能が向上した。
しかし、それはまた、モデル決定を説明し、検証する能力にも影響を与えました。
モデルは、スプリアス相関またはショートカットとも呼ばれる画像の非関連部分を使用して、ベンチマークデータセットで高いパフォーマンスを得ることができるが、現実のシナリオでは失敗する。
本研究では,胸部X線と眼底画像の分類にCNN(convolutional neural network)の能力に挑戦し,臨床的に関係のある部分をマスクアウトする。
マスク戦略に関わらず、PadChestデータセットでトレーニングされたすべてのモデルがランダムにAUC(Area Under the Curve)を得ることができることを示す。
さらに、フルイメージでトレーニングされたモデルは、関心領域(ROI)を含まない画像に対して優れた性能を得るが、ROIのみを含む画像上で得られたモデルよりも優れている。
また,Chaksuデータセットでは,非バイアスモデルに対する期待値に一致した結果が得られた。
本研究は,SHAP法と埋め込み解析を用いた性能解析を超越した手法である。
胸部X線を異なるマスキングで解釈し,臨床知識で所見を補完する放射線検査を施行した。
私たちのコードはhttps://github.com/TheoSourget/MMC_Masking and https://github.com/TheoSourget/MMC_Masking_EyeFundusで利用可能です。
関連論文リスト
- CROCODILE: Causality aids RObustness via COntrastive DIsentangled LEarning [8.975676404678374]
CROCODILEフレームワークを導入し、因果関係のツールがモデルの堅牢性からドメインシフトを育む方法を示します。
我々はCXRの多ラベル肺疾患分類に750万枚以上の画像を用いて本手法を適用した。
論文 参考訳(メタデータ) (2024-08-09T09:08:06Z) - Comparative Analysis of ImageNet Pre-Trained Deep Learning Models and
DINOv2 in Medical Imaging Classification [7.205610366609243]
本稿では,脳MRIデータの3つの臨床的モダリティを用いたグリオーマグレーディングタスクを行った。
我々は、ImageNetやDINOv2をベースとした様々な事前学習深層学習モデルの性能を比較した。
臨床データでは,DINOv2 はImageNet ベースで事前訓練したモデルほど優れていなかった。
論文 参考訳(メタデータ) (2024-02-12T11:49:08Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
プルーニングは、ディープニューラルネットワークを圧縮し、全体的なパフォーマンスに大きな影響を及ぼすことなく、メモリ使用量と推論時間を短縮する強力なテクニックとして登場した。
この研究は、プルーニングがモデル行動に与える影響を理解するための第一歩である。
論文 参考訳(メタデータ) (2023-08-17T20:40:30Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Explainable and Lightweight Model for COVID-19 Detection Using Chest
Radiology Images [0.0]
畳み込みニューラルネットワーク(CNN)は、大量のデータをトレーニングする際の画像解析タスクに適している。
新型コロナウイルス(COVID-19)の検出のために提案されたツールのほとんどは、高い感度とリコールを持っているが、目に見えないデータセットでのテストでは、一般化と実行に失敗している。
本研究は,提案モデルの成功と失敗について,画像レベルで詳細に考察する。
論文 参考訳(メタデータ) (2022-12-28T11:48:29Z) - Contrastive Attention for Automatic Chest X-ray Report Generation [124.60087367316531]
ほとんどの場合、正常領域が胸部X線像全体を支配し、これらの正常領域の対応する記述が最終報告を支配している。
本稿では,現在の入力画像と通常の画像を比較してコントラスト情報を抽出するContrastive Attention(CA)モデルを提案する。
2つの公開データセットで最先端の結果を得る。
論文 参考訳(メタデータ) (2021-06-13T11:20:31Z) - An End-to-End Breast Tumour Classification Model Using Context-Based
Patch Modelling- A BiLSTM Approach for Image Classification [19.594639581421422]
我々は, この関係を, 特定の腫瘍領域から抽出したパッチ間の特徴に基づく相関関係と統合しようと試みている。
我々は、顕微鏡画像とWSI腫瘍領域の2つのデータセットでモデルをトレーニングし、テストした。
CNN機能付きBiLSTMは、パッチをエンドツーエンドの画像分類ネットワークにモデル化する上で、はるかに優れた性能を示した。
論文 参考訳(メタデータ) (2021-06-05T10:43:58Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
医用画像の特徴に対処する枠組みを提案する。
このモデルはまず、画像全体の低容量だがメモリ効率のよいネットワークを使用して、最も情報性の高い領域を識別する。
次に、選択したリージョンから詳細を収集するために、別の高容量ネットワークを適用します。
最後に、グローバルおよびローカル情報を集約して最終的な予測を行うフュージョンモジュールを使用する。
論文 参考訳(メタデータ) (2020-02-13T15:28:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。