論文の概要: Benchmarking and Enhancing Surgical Phase Recognition Models for Robotic-Assisted Esophagectomy
- arxiv url: http://arxiv.org/abs/2412.04039v1
- Date: Thu, 05 Dec 2024 10:23:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:40:45.395338
- Title: Benchmarking and Enhancing Surgical Phase Recognition Models for Robotic-Assisted Esophagectomy
- Title(参考訳): 食道切除手術における外科的位相認識モデルのベンチマークと強化
- Authors: Yiping Li, Romy van Jaarsveld, Ronald de Jong, Jasper Bongers, Gino Kuiper, Richard van Hillegersberg, Jelle Ruurda, Marcel Breeuwer, Yasmina Al Khalil,
- Abstract要約: 食道癌に対する低侵襲食道切除術(RAMIE)を施行した。
我々の目標は, 外科的位相認識に深層学習を活用することであり, 術中支援を外科医に提供することである。
この複雑な手順の時間的ダイナミクスをより効果的に捉えるために,エンコーダ・デコーダ構造を特徴とする新しいディープラーニングモデルを開発した。
- 参考スコア(独自算出の注目度): 1.0807134580166777
- License:
- Abstract: Robotic-assisted minimally invasive esophagectomy (RAMIE) is a recognized treatment for esophageal cancer, offering better patient outcomes compared to open surgery and traditional minimally invasive surgery. RAMIE is highly complex, spanning multiple anatomical areas and involving repetitive phases and non-sequential phase transitions. Our goal is to leverage deep learning for surgical phase recognition in RAMIE to provide intraoperative support to surgeons. To achieve this, we have developed a new surgical phase recognition dataset comprising 27 videos. Using this dataset, we conducted a comparative analysis of state-of-the-art surgical phase recognition models. To more effectively capture the temporal dynamics of this complex procedure, we developed a novel deep learning model featuring an encoder-decoder structure with causal hierarchical attention, which demonstrates superior performance compared to existing models.
- Abstract(参考訳): 食道癌に対する外科的治療として低侵襲食道切除術(RAMIE)が有用である。
RAMIEは非常に複雑で、複数の解剖学的領域にまたがり、反復相と非逐次相転移を含む。
我々の目標は, 外科的位相認識に深層学習を活用することであり, 術中支援を外科医に提供することである。
そこで我々は,27本の動画からなる新しい外科的位相認識データセットを開発した。
このデータセットを用いて,最先端の外科的位相認識モデルの比較分析を行った。
この複雑な手順の時間的ダイナミクスをより効果的に捉えるために,エンコーダ・デコーダ構造を特徴とする新しいディープラーニングモデルを開発した。
関連論文リスト
- SPRMamba: Surgical Phase Recognition for Endoscopic Submucosal Dissection with Mamba [4.37495931705689]
本研究では,ESD外科的位相認識のための新しいマンバベースのフレームワークであるSPRMambaを提案する。
本研究では,SPRMambaが既存の最先端手法を超越し,各種の外科的位相認識タスクにおいてより堅牢性を示すことを示す。
論文 参考訳(メタデータ) (2024-09-18T16:26:56Z) - Surgical Temporal Action-aware Network with Sequence Regularization for
Phase Recognition [28.52533700429284]
本稿では,STAR-Netと命名されたシークエンス正規化を施した手術時行動認識ネットワークを提案する。
MS-STAモジュールは、視覚的特徴と2Dネットワークを犠牲にして、手術行動の空間的および時間的知識を統合する。
我々のSTAR-Net with MS-STA and DSR can exploit of visual features of surgery action with effective regularization, which to the excellent performance of surgery phase recognition。
論文 参考訳(メタデータ) (2023-11-21T13:43:16Z) - Phase-Specific Augmented Reality Guidance for Microscopic Cataract
Surgery Using Long-Short Spatiotemporal Aggregation Transformer [14.568834378003707]
乳化白内障手術(英: Phaemulsification cataract surgery, PCS)は、外科顕微鏡を用いた外科手術である。
PCS誘導システムは、手術用顕微鏡映像から貴重な情報を抽出し、熟練度を高める。
既存のPCSガイダンスシステムでは、位相特異なガイダンスに悩まされ、冗長な視覚情報に繋がる。
本稿では,認識された手術段階に対応するAR情報を提供する,新しい位相特異的拡張現実(AR)誘導システムを提案する。
論文 参考訳(メタデータ) (2023-09-11T02:56:56Z) - GLSFormer : Gated - Long, Short Sequence Transformer for Step
Recognition in Surgical Videos [57.93194315839009]
本稿では,シーケンスレベルのパッチから時間的特徴を直接学習するための視覚変換器に基づくアプローチを提案する。
本研究では,白内障手術用ビデオデータセットである白内障-101とD99に対するアプローチを広範に評価し,各種の最先端手法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2023-07-20T17:57:04Z) - Prediction of Post-Operative Renal and Pulmonary Complications Using
Transformers [69.81176740997175]
術後急性腎不全,肺合併症,院内死亡の予測におけるトランスフォーマーモデルの有用性について検討した。
以上の結果から,トランスフォーマーモデルにより術後合併症の予測や従来の機械学習モデルよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-06-01T14:08:05Z) - Learning-Based Keypoint Registration for Fetoscopic Mosaicking [65.02392513942533]
ツイン・トゥ・ツイン輸血症候群(TTTS)では、単子葉胎盤の血管系異常な血管性無痛が両胎児の間に不均一な血流を生じさせる。
本研究では,フィールド・オブ・ビュー展開のためのフェトスコープフレーム登録のための学習ベースフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-26T21:21:12Z) - Surgical Phase Recognition in Laparoscopic Cholecystectomy [57.929132269036245]
本稿では,2段階推論パイプラインのキャリブレーションされた信頼度スコアを利用するTransformerに基づく手法を提案する。
提案手法はColec80データセットのベースラインモデルよりも優れており,様々なアクションセグメンテーション手法に適用できる。
論文 参考訳(メタデータ) (2022-06-14T22:55:31Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
腹腔鏡下手術における三肢の認識のためにMICCAI 2021で実施した内視鏡的視力障害であるColecTriplet 2021を提案する。
課題の参加者が提案する最先端の深層学習手法の課題設定と評価について述べる。
4つのベースライン法と19の新しいディープラーニングアルゴリズムが提示され、手術ビデオから直接手術行動三重項を認識し、平均平均精度(mAP)は4.2%から38.1%である。
論文 参考訳(メタデータ) (2022-04-10T18:51:55Z) - OperA: Attention-Regularized Transformers for Surgical Phase Recognition [46.72897518687539]
長い映像列から外科的位相を正確に予測する変圧器モデルoperaを紹介する。
operaは腹腔鏡下胆嚢摘出ビデオの2つのデータセットで徹底的に評価されており,術中時間的改善のアプローチを上回っている。
論文 参考訳(メタデータ) (2021-03-05T18:59:14Z) - TeCNO: Surgical Phase Recognition with Multi-Stage Temporal
Convolutional Networks [43.95869213955351]
外科的位相認識のための階層的予測補正を行う多段階時間畳み込みネットワーク(MS-TCN)を提案する。
本手法は腹腔鏡下胆嚢摘出術ビデオの2つのデータセットに対して,追加の外科的ツール情報を用いずに徹底的に評価した。
論文 参考訳(メタデータ) (2020-03-24T10:12:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。