ZipAR: Accelerating Auto-regressive Image Generation through Spatial Locality
- URL: http://arxiv.org/abs/2412.04062v2
- Date: Wed, 18 Dec 2024 07:28:52 GMT
- Title: ZipAR: Accelerating Auto-regressive Image Generation through Spatial Locality
- Authors: Yefei He, Feng Chen, Yuanyu He, Shaoxuan He, Hong Zhou, Kaipeng Zhang, Bohan Zhuang,
- Abstract summary: ZipAR is a training-free, plug-and-play parallel decoding framework for auto-regressive (AR) visual generation.
ZipAR can reduce the number of model forward passes by up to 91% on the Emu3-Gen model without requiring any additional retraining.
- Score: 19.486745219466666
- License:
- Abstract: In this paper, we propose ZipAR, a training-free, plug-and-play parallel decoding framework for accelerating auto-regressive (AR) visual generation. The motivation stems from the observation that images exhibit local structures, and spatially distant regions tend to have minimal interdependence. Given a partially decoded set of visual tokens, in addition to the original next-token prediction scheme in the row dimension, the tokens corresponding to spatially adjacent regions in the column dimension can be decoded in parallel, enabling the ``next-set prediction'' paradigm. By decoding multiple tokens simultaneously in a single forward pass, the number of forward passes required to generate an image is significantly reduced, resulting in a substantial improvement in generation efficiency. Experiments demonstrate that ZipAR can reduce the number of model forward passes by up to 91% on the Emu3-Gen model without requiring any additional retraining. Code is available here: https://github.com/ThisisBillhe/ZipAR.
Related papers
- Parallelized Autoregressive Visual Generation [65.9579525736345]
We propose a simple yet effective approach for parallelized autoregressive visual generation.
Our method achieves a 3.6x speedup with comparable quality and up to 9.5x speedup with minimal quality degradation across both image and video generation tasks.
arXiv Detail & Related papers (2024-12-19T17:59:54Z) - Spectral Image Tokenizer [21.84385276311364]
Image tokenizers map images to sequences of discrete tokens.
We propose to tokenize the image spectrum instead, obtained from a discrete wavelet transform (DWT)
We evaluate the tokenizer metrics as multiscale image generation, text-guided image upsampling and editing.
arXiv Detail & Related papers (2024-12-12T18:59:31Z) - RandAR: Decoder-only Autoregressive Visual Generation in Random Orders [54.49937384788739]
RandAR is a decoder-only visual autoregressive (AR) model capable of generating images in arbitrary token orders.
Our design enables random order by inserting a "position instruction token" before each image token to be predicted.
RandAR supports inpainting, outpainting and resolution inference in a zero-shot manner.
arXiv Detail & Related papers (2024-12-02T18:59:53Z) - LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding [30.630803933771865]
Experimental results demonstrate the efficacy of our method in providing a substantial speed-up over speculative decoding.
LANTERN increases speed-ups by $mathbf1.75times$ and $mathbf1.82times$, as compared to greedy decoding and random sampling.
arXiv Detail & Related papers (2024-10-04T12:21:03Z) - Accelerating Auto-regressive Text-to-Image Generation with Training-free Speculative Jacobi Decoding [60.188309982690335]
We propose a training-free probabilistic parallel decoding algorithm, Speculative Jacobi Decoding (SJD), to accelerate auto-regressive text-to-image generation.
By introducing a probabilistic convergence criterion, our SJD accelerates the inference of auto-regressive text-to-image generation while maintaining the randomness in sampling-based token decoding.
arXiv Detail & Related papers (2024-10-02T16:05:27Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
We propose a novel parallel decoding approach, namely textithidden transfer, which decodes multiple successive tokens simultaneously in a single forward pass.
In terms of acceleration metrics, we outperform all the single-model acceleration techniques, including Medusa and Self-Speculative decoding.
arXiv Detail & Related papers (2024-04-18T09:17:06Z) - SA$^2$VP: Spatially Aligned-and-Adapted Visual Prompt [59.280491260635266]
Methods for visual prompt tuning follow the sequential modeling paradigm stemming from NLP.
Mymodel model learns a two-dimensional prompt token map with equal (or scaled) size to the image token map.
Our model can conduct individual prompting for different image tokens in a fine-grained manner.
arXiv Detail & Related papers (2023-12-16T08:23:43Z) - Progressive Text-to-Image Generation [40.09326229583334]
We present a progressive model for high-fidelity text-to-image generation.
The proposed method takes effect by creating new image tokens from coarse to fine based on the existing context.
The resulting coarse-to-fine hierarchy makes the image generation process intuitive and interpretable.
arXiv Detail & Related papers (2022-10-05T14:27:20Z) - Accurate Image Restoration with Attention Retractable Transformer [50.05204240159985]
We propose Attention Retractable Transformer (ART) for image restoration.
ART presents both dense and sparse attention modules in the network.
We conduct extensive experiments on image super-resolution, denoising, and JPEG compression artifact reduction tasks.
arXiv Detail & Related papers (2022-10-04T07:35:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.