ZipAR: Accelerating Auto-regressive Image Generation through Spatial Locality
- URL: http://arxiv.org/abs/2412.04062v2
- Date: Wed, 18 Dec 2024 07:28:52 GMT
- Title: ZipAR: Accelerating Auto-regressive Image Generation through Spatial Locality
- Authors: Yefei He, Feng Chen, Yuanyu He, Shaoxuan He, Hong Zhou, Kaipeng Zhang, Bohan Zhuang,
- Abstract summary: ZipAR is a training-free, plug-and-play parallel decoding framework for auto-regressive (AR) visual generation.<n>ZipAR can reduce the number of model forward passes by up to 91% on the Emu3-Gen model without requiring any additional retraining.
- Score: 19.486745219466666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose ZipAR, a training-free, plug-and-play parallel decoding framework for accelerating auto-regressive (AR) visual generation. The motivation stems from the observation that images exhibit local structures, and spatially distant regions tend to have minimal interdependence. Given a partially decoded set of visual tokens, in addition to the original next-token prediction scheme in the row dimension, the tokens corresponding to spatially adjacent regions in the column dimension can be decoded in parallel, enabling the ``next-set prediction'' paradigm. By decoding multiple tokens simultaneously in a single forward pass, the number of forward passes required to generate an image is significantly reduced, resulting in a substantial improvement in generation efficiency. Experiments demonstrate that ZipAR can reduce the number of model forward passes by up to 91% on the Emu3-Gen model without requiring any additional retraining. Code is available here: https://github.com/ThisisBillhe/ZipAR.
Related papers
- Token-Shuffle: Towards High-Resolution Image Generation with Autoregressive Models [92.18057318458528]
Token-Shuffle is a novel method that reduces the number of image tokens in Transformer.
Our strategy requires no additional pretrained text-encoder and enables MLLMs to support extremely high-resolution image synthesis.
In GenAI-benchmark, our 2.7B model achieves 0.77 overall score on hard prompts, outperforming AR models LlamaGen by 0.18 and diffusion models LDM by 0.15.
arXiv Detail & Related papers (2025-04-24T17:59:56Z) - GigaTok: Scaling Visual Tokenizers to 3 Billion Parameters for Autoregressive Image Generation [62.77721499671665]
We introduce GigaTok, the first approach to improve image reconstruction, generation, and representation learning when scaling visual tokenizers.
We identify the growing complexity of latent space as the key factor behind the reconstruction vs. generation dilemma.
By scaling to $bf3 space billion$ parameters, GigaTok achieves state-of-the-art performance in reconstruction, downstream AR generation, and downstream AR representation quality.
arXiv Detail & Related papers (2025-04-11T17:59:58Z) - FastVAR: Linear Visual Autoregressive Modeling via Cached Token Pruning [66.5214586624095]
Existing Visual Autoregressive ( VAR) paradigms process the entire token map at each scale step, leading to the complexity and runtime scaling dramatically with image resolution.
We propose Fastmore, a post-training acceleration method for efficient resolution scaling with VARs.
Experiments show Fastmore can further speedup FlashAttention-accelerated VAR by 2.7$times$ with negligible performance drop of 1%.
arXiv Detail & Related papers (2025-03-30T08:51:19Z) - Neighboring Autoregressive Modeling for Efficient Visual Generation [19.486745219466666]
Neighboring Autoregressive Modeling (NAR) is a novel paradigm that formulates autoregressive visual generation as a progressive outpainting procedure.
To enable parallel prediction of multiple adjacent tokens in the spatial-temporal space, we introduce a set of dimension-oriented decoding heads.
Experiments on ImageNet$256times 256$ and UCF101 demonstrate that NAR achieves 2.4$times$ and 8.6$times$ higher throughput respectively.
arXiv Detail & Related papers (2025-03-12T05:52:27Z) - RandAR: Decoder-only Autoregressive Visual Generation in Random Orders [54.49937384788739]
RandAR is a decoder-only visual autoregressive (AR) model capable of generating images in arbitrary token orders.<n>Our design enables random order by inserting a "position instruction token" before each image token to be predicted.<n>RandAR supports inpainting, outpainting and resolution inference in a zero-shot manner.
arXiv Detail & Related papers (2024-12-02T18:59:53Z) - Boosting Few-Shot Detection with Large Language Models and Layout-to-Image Synthesis [1.1633929083694388]
We propose a framework for enhancing few-shot detection beyond state-of-the-art generative augmentation approaches.
We introduce our novel layout-aware CLIP score for sample ranking, enabling tight coupling between generated layouts and images.
With our approach, a YOLOX-S baseline is boosted by more than 140%, 50%, 35% in mAP on the COCO 5-,10-, and 30-shot settings.
arXiv Detail & Related papers (2024-10-09T12:57:45Z) - LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding [30.630803933771865]
Experimental results demonstrate the efficacy of our method in providing a substantial speed-up over speculative decoding.
LANTERN increases speed-ups by $mathbf1.75times$ and $mathbf1.76times$, as compared to greedy decoding and random sampling.
arXiv Detail & Related papers (2024-10-04T12:21:03Z) - Accelerating Auto-regressive Text-to-Image Generation with Training-free Speculative Jacobi Decoding [60.188309982690335]
We propose a training-free probabilistic parallel decoding algorithm, Speculative Jacobi Decoding (SJD), to accelerate auto-regressive text-to-image generation.
By introducing a probabilistic convergence criterion, our SJD accelerates the inference of auto-regressive text-to-image generation while maintaining the randomness in sampling-based token decoding.
arXiv Detail & Related papers (2024-10-02T16:05:27Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
We introduce a novel neural rendering technique to solve image-to-3D from a single view.
Our approach employs the signed distance function as the surface representation and incorporates generalizable priors through geometry-encoding volumes and HyperNetworks.
Our experiments show the advantages of our proposed approach with consistent results and rapid generation.
arXiv Detail & Related papers (2023-12-24T08:42:37Z) - SA$^2$VP: Spatially Aligned-and-Adapted Visual Prompt [59.280491260635266]
Methods for visual prompt tuning follow the sequential modeling paradigm stemming from NLP.
Mymodel model learns a two-dimensional prompt token map with equal (or scaled) size to the image token map.
Our model can conduct individual prompting for different image tokens in a fine-grained manner.
arXiv Detail & Related papers (2023-12-16T08:23:43Z) - Progressive Text-to-Image Generation [40.09326229583334]
We present a progressive model for high-fidelity text-to-image generation.
The proposed method takes effect by creating new image tokens from coarse to fine based on the existing context.
The resulting coarse-to-fine hierarchy makes the image generation process intuitive and interpretable.
arXiv Detail & Related papers (2022-10-05T14:27:20Z) - DynaST: Dynamic Sparse Transformer for Exemplar-Guided Image Generation [56.514462874501675]
We propose a dynamic sparse attention based Transformer model to achieve fine-level matching with favorable efficiency.
The heart of our approach is a novel dynamic-attention unit, dedicated to covering the variation on the optimal number of tokens one position should focus on.
Experiments on three applications, pose-guided person image generation, edge-based face synthesis, and undistorted image style transfer, demonstrate that DynaST achieves superior performance in local details.
arXiv Detail & Related papers (2022-07-13T11:12:03Z) - LiP-Flow: Learning Inference-time Priors for Codec Avatars via
Normalizing Flows in Latent Space [90.74976459491303]
We introduce a prior model that is conditioned on the runtime inputs and tie this prior space to the 3D face model via a normalizing flow in the latent space.
A normalizing flow bridges the two representation spaces and transforms latent samples from one domain to another, allowing us to define a latent likelihood objective.
We show that our approach leads to an expressive and effective prior, capturing facial dynamics and subtle expressions better.
arXiv Detail & Related papers (2022-03-15T13:22:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.