論文の概要: TransAdapter: Vision Transformer for Feature-Centric Unsupervised Domain Adaptation
- arxiv url: http://arxiv.org/abs/2412.04073v1
- Date: Thu, 05 Dec 2024 11:11:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:40:44.962867
- Title: TransAdapter: Vision Transformer for Feature-Centric Unsupervised Domain Adaptation
- Title(参考訳): TransAdapter: 特徴中心の教師なしドメイン適応のための視覚変換器
- Authors: A. Enes Doruk, Erhan Oztop, Hasan F. Ates,
- Abstract要約: Unsupervised Domain Adaptation (UDA)は、ソースドメインのラベル付きデータを使用して、ラベルなしのターゲットドメインのタスクを解決することを目的としている。
従来のCNNベースの手法は、複雑なドメイン関係を完全に捉えるのに苦労している。
3つの鍵モジュールを持つSwin Transformerを利用する新しいUDA手法を提案する。
- 参考スコア(独自算出の注目度): 0.3277163122167433
- License:
- Abstract: Unsupervised Domain Adaptation (UDA) aims to utilize labeled data from a source domain to solve tasks in an unlabeled target domain, often hindered by significant domain gaps. Traditional CNN-based methods struggle to fully capture complex domain relationships, motivating the shift to vision transformers like the Swin Transformer, which excel in modeling both local and global dependencies. In this work, we propose a novel UDA approach leveraging the Swin Transformer with three key modules. A Graph Domain Discriminator enhances domain alignment by capturing inter-pixel correlations through graph convolutions and entropy-based attention differentiation. An Adaptive Double Attention module combines Windows and Shifted Windows attention with dynamic reweighting to align long-range and local features effectively. Finally, a Cross-Feature Transform modifies Swin Transformer blocks to improve generalization across domains. Extensive benchmarks confirm the state-of-the-art performance of our versatile method, which requires no task-specific alignment modules, establishing its adaptability to diverse applications.
- Abstract(参考訳): Unsupervised Domain Adaptation (UDA) は、ソースドメインからのラベル付きデータを使用して、ラベルなしのターゲットドメインのタスクを解決することを目的としている。
従来のCNNベースのメソッドは、ローカルとグローバル両方の依存関係のモデリングに長けているSwin Transformerのようなビジョントランスフォーマーへのシフトを動機付け、複雑なドメイン関係を完全に捉えるのに苦労している。
本研究では,Swin Transformer を利用した新しい UDA 手法を提案する。
グラフ領域判別器は、グラフ畳み込みとエントロピーに基づく注目度差を通じて画素間相関をキャプチャすることで、ドメインアライメントを向上させる。
Adaptive Double Attentionモジュールは、WindowsとShifted Windowsの注意と動的再重み付けを組み合わせて、長距離とローカルの機能を効果的に整列させる。
最後に、クロスフィーチャー変換は、Swin Transformerブロックを変更して、ドメイン間の一般化を改善する。
広範囲なベンチマークにより,タスク固有のアライメントモジュールを必要としない汎用手法の最先端性能を確認し,多様なアプリケーションへの適応性を確立した。
関連論文リスト
- Exploring Consistency in Cross-Domain Transformer for Domain Adaptive
Semantic Segmentation [51.10389829070684]
ドメインギャップは、自己注意の相違を引き起こす可能性がある。
このギャップのため、変圧器は、ターゲット領域の精度を低下させる刺激領域または画素に付随する。
ドメイン横断の注意層を持つアテンションマップに適応する。
論文 参考訳(メタデータ) (2022-11-27T02:40:33Z) - Domain Adaptation for Object Detection using SE Adaptors and Center Loss [0.0]
本稿では,高速RCNNに基づく教師なしドメイン適応手法を導入し,ドメインシフトによる性能低下を防止する。
また、SEアダプタと呼ばれる圧縮励起機構を利用して、ドメインの注意を向上するアダプティブレイヤのファミリーも導入する。
最後に、インスタンスと画像レベルの表現に中心損失を組み込んで、クラス内分散を改善する。
論文 参考訳(メタデータ) (2022-05-25T17:18:31Z) - Safe Self-Refinement for Transformer-based Domain Adaptation [73.8480218879]
Unsupervised Domain Adaptation (UDA)は、ラベル豊富なソースドメインを活用して、関連するラベルのないターゲットドメイン上のタスクを解決することを目的としている。
特にソースとターゲットドメインの間に大きなドメインギャップがある場合、これは難しい問題です。
SSRT (Safe Self-Refinement for Transformer-based domain adaptation) という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-04-16T00:15:46Z) - Towards Unsupervised Domain Adaptation via Domain-Transformer [0.0]
教師なしドメイン適応(UDA)のためのドメイン変換器(DoT)を提案する。
DoTは新しい視点から、CNNバックボーンとTransformerのコアアテンションメカニズムを統合する。
ドメイン間の局所的な意味的一貫性を実現し、そこではドメインレベルの注意と多様体の正規化が探索される。
論文 参考訳(メタデータ) (2022-02-24T02:30:15Z) - CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [44.06904757181245]
Unsupervised domain adapt (UDA) は、ラベル付きソースドメインから異なるラベル付きターゲットドメインに学習した知識を転送することを目的としている。
カテゴリレベルに基づくUDAの根本的な問題は、ターゲットドメインのサンプル用の擬似ラベルの生成である。
我々は,対象サンプルの擬似ラベルを生成するために,双方向中心認識ラベルアルゴリズムを設計する。
擬似ラベルとともに、ソース/ターゲット特徴学習とソース/ターゲット領域アライメントに自己アテンションとクロスアテンションを適用するために、ウェイトシェアリング・トリプルブランチ・トランスフォーマー・フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-13T17:59:07Z) - Exploring Sequence Feature Alignment for Domain Adaptive Detection
Transformers [141.70707071815653]
本稿では,検出変圧器の適応に特化して設計された新しいシーケンス特徴アライメント(SFA)法を提案する。
SFAはドメインクエリベースの機能アライメント(DQFA)モジュールとトークンワイド機能アライメント(TDA)モジュールで構成される。
3つの挑戦的なベンチマーク実験により、SFAは最先端のドメイン適応オブジェクト検出方法より優れていることが示された。
論文 参考訳(メタデータ) (2021-07-27T07:17:12Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Transformer-Based Source-Free Domain Adaptation [134.67078085569017]
本研究では,ソースフリードメイン適応(SFDA)の課題について検討する。
我々は、FDAの一般化モデルを学ぶためのTransformer(TransDA)という、汎用的で効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-28T23:06:26Z) - Deep Adversarial Transition Learning using Cross-Grafted Generative
Stacks [3.756448228784421]
本稿では,ドメインギャップを埋める新たなDATL(Deep Adversarial transition Learning)フレームワークを提案する。
2つの領域に対して可変オートエンコーダ(VAE)を構築し、VAEのデコーダスタックをクロスグラフすることで双方向遷移を形成する。
生成敵対ネットワーク(GAN)は、対象ドメインデータをソースドメインの既知のラベル空間にマッピングするドメイン適応に使用される。
論文 参考訳(メタデータ) (2020-09-25T04:25:27Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
領域適応法は、2つの領域間の分布がシフトし、それを認識しようとすると仮定する。
グラフ埋め込みに基づく汎用フレームワークを提案する。
提案手法が強力なドメイン適応フレームワークにつながることを示す。
論文 参考訳(メタデータ) (2020-03-09T12:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。