論文の概要: Enhancing Mathematical Reasoning in LLMs with Background Operators
- arxiv url: http://arxiv.org/abs/2412.04110v1
- Date: Thu, 05 Dec 2024 12:24:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:41:06.926342
- Title: Enhancing Mathematical Reasoning in LLMs with Background Operators
- Title(参考訳): 背景演算子を用いたLLMにおける数学的推論の強化
- Authors: Jiajun Chen, Yik-Cheung Tam,
- Abstract要約: 問題固有の述語と、背景演算子から派生した中間述語を含むPrologソリューションを開発した。
効率的なデータ拡張のために、K-foldクロスバリデード自己学習を適用する。
実験の結果,5倍の自己学習が新しい正確なProlog解を効果的に同定できることが示唆された。
- 参考スコア(独自算出の注目度): 36.14500963096528
- License:
- Abstract: We propose utilizing background operators for mathematical reasoning in large language models (LLMs). To achieve this, we define a set of fundamental mathematical predicates as the basic building blocks. For each mathematical problem, we develop a Prolog solution that includes problem-specific predicates and intermediate predicates derived from these background operators, ensuring that each solution adheres to the defined operator set. We introduce the MATH-Prolog corpus, which is derived from the counting and probability categories of the MATH corpus. For efficient data augmentation, we apply K-fold cross-validated self-training. This method incrementally generates new Prolog solutions for each fold, incorporating those verified as correct into the training set throughout the model training process. Our experimental results demonstrate that 5-fold crossvalidated self-training effectively identifies new, accurate Prolog solutions, achieving an accuracy of 84.6% on the cross-validated set, and 84.8% on the test set during fine-tuning the Meta-Llama-3.1-8B-Instruct model. This approach successfully uncovers new solutions with fully computable inference steps for previously unseen problems. Additionally, incorporating the background mathematical predicates into the prompt enhances solution coverage.
- Abstract(参考訳): 大規模言語モデル(LLM)の数学的推論における背景演算子の利用を提案する。
これを実現するために,基本的な数学的述語を基本構成ブロックとして定義する。
各数学問題に対して、問題固有の述語とこれらのバックグラウンド演算子から導出される中間述語を含むPrologソリューションを開発し、各解が定義された演算子集合に従属することを保証する。
我々は、MATHコーパスのカウントと確率のカテゴリから派生したMATH-Prologコーパスを紹介する。
効率的なデータ拡張のために、K-foldクロスバリデード自己学習を適用する。
本手法では, モデルトレーニングプロセスを通じて, 検証済みのものをトレーニングセットに組み込んで, 折り畳み毎に新たなPrologソリューションを段階的に生成する。
実験の結果,5倍のクロスバリデード自己学習により,新しいProlog解の精度が84.6%,Meta-Llama-3.1-8B-インストラクトモデルの微調整時に84.8%となることがわかった。
このアプローチは、これまで見つからなかった問題に対して、完全に計算可能な推論ステップを持つ新しいソリューションをうまく発見する。
さらに、背景の数学的述語をプロンプトに組み込むことで、ソリューションカバレッジが向上する。
関連論文リスト
- MathFimer: Enhancing Mathematical Reasoning by Expanding Reasoning Steps through Fill-in-the-Middle Task [49.355810887265925]
数学的推論ステップ拡張のための新しいフレームワークであるMathFimerを紹介する。
我々は、慎重にキュレートしたNuminaMath-FIMデータセットに基づいて、特殊モデルMathFimer-7Bを開発した。
次に、これらのモデルを適用して、解鎖に詳細な中間ステップを挿入することで、既存の数学的推論データセットを強化する。
論文 参考訳(メタデータ) (2025-02-17T11:22:24Z) - On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
複数モーダルな)自己教師付き表現学習のための連続領域における識別確率モデル問題について検討する。
我々は、自己教師付き表現学習における現在のInfoNCEに基づくコントラスト損失の制限を明らかにするために一般化誤差解析を行う。
論文 参考訳(メタデータ) (2024-10-11T18:02:46Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - BEATS: Optimizing LLM Mathematical Capabilities with BackVerify and Adaptive Disambiguate based Efficient Tree Search [22.672130194493793]
大規模言語モデル(LLM)は、幅広いタスクやドメインで例外的なパフォーマンスを示している。
彼らは数学の厳密で論理的な性質のため、数学の問題を解くのに依然として困難に直面している。
本稿では,数学的問題解決能力を高めるための新しい手法BEATSを提案する。
論文 参考訳(メタデータ) (2024-09-26T15:47:42Z) - MathGenie: Generating Synthetic Data with Question Back-translation for Enhancing Mathematical Reasoning of LLMs [38.127313175508746]
MathGenieは、小規模の問題解決データセットから多様で信頼性の高い数学問題を生成する新しい方法である。
7Bから70Bまでの各種事前学習モデルについて, 提案手法の有効性を検証するために, 新たなキュレートデータを用いて訓練を行った。
MathGenieLM-InternLM2はGSM8Kで87.7%、MATHで55.7%の精度を達成し、オープンソース言語モデルで最高のスコアを確保している。
論文 参考訳(メタデータ) (2024-02-26T07:17:25Z) - Evaluating and Improving Tool-Augmented Computation-Intensive Math
Reasoning [75.74103236299477]
CoT(Chain-of- Thought prompting)とツール拡張は、大きな言語モデルを改善するための効果的なプラクティスとして検証されている。
ツールインターフェース,すなわち textbfDELI を用いた推論ステップを考慮に入れた新しい手法を提案する。
CARPと他の6つのデータセットの実験結果から、提案されたDELIは、主に競合ベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-06-04T17:02:59Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
本研究では,大規模言語モデル (LLM) の推論能力を向上させるために,新しい満足度支援言語モデリング (SatLM) 手法を提案する。
我々はLLMを用いて命令型プログラムではなく宣言型タスク仕様を生成し、既製の自動定理証明器を利用して最終解を導出する。
我々はSATLMを8つの異なるデータセット上で評価し、命令パラダイムにおいてプログラム支援されたLMよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-05-16T17:55:51Z) - Submodular Meta-Learning [43.15332631500541]
将来的なタスクのパフォーマンス向上のために,メタラーニングフレームワークの個別版を導入する。
我々のアプローチは、事前データ、すなわち、以前に訪れたタスクを使用して、適切な初期ソリューションセットをトレーニングすることを目的としている。
我々のフレームワークは、性能損失を小さく抑えながら、新しいタスクを解く際に、計算の複雑さを著しく低減させることを示した。
論文 参考訳(メタデータ) (2020-07-11T21:02:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。