Dissipation-assisted preparation of topological boundary states
- URL: http://arxiv.org/abs/2412.04152v1
- Date: Thu, 05 Dec 2024 13:28:05 GMT
- Title: Dissipation-assisted preparation of topological boundary states
- Authors: Yi Peng, Chao Yang, Haiping Hu, Yucheng Wang,
- Abstract summary: We study the impact of a type of experimentally realizable bond dissipation on topological systems by calculating the steady-state density matrix.
This work provides new insights into the preparation of topological edge states, particularly in the context of Majorana zero modes.
- Score: 8.616281582401532
- License:
- Abstract: Robust states emerging at the boundaries of a system are an important hallmark of topological matter. Here, using the Su-Schrieffer-Heeger model and the Kitaev chain as examples, we study the impact of a type of experimentally realizable bond dissipation on topological systems by calculating the steady-state density matrix, and demonstrate that such dissipation applied near the system boundary can assist in preparing topological edge states of the parent Hamiltonian, irrespective of the initial state or filling. This effect stems from the matching between the phase distribution encoded in the topological edge states and the target state prepared through bond dissipation. This work provides new insights into the preparation of topological edge states, particularly in the context of Majorana zero modes.
Related papers
- Topological edge states at Floquet quantum criticality [0.0]
Topologically protected edge states exactly at topological phase boundaries challenge the conventional belief that topological states must be associated with a bulk energy gap.
Because periodically driven (Floquet) systems host unusually intricate topological phase boundaries, topological edge states can be prolific at such Floquet quantum criticality.
arXiv Detail & Related papers (2024-10-20T14:06:02Z) - Steady-state topological order [4.990879531940761]
We investigate a generalization of topological order from closed systems to open systems, for which the steady states take the place of ground states.
We construct typical lattice models with steady-state topological order, and characterize them by complementary approaches based on topological degeneracy of steady states, topological entropy, and dissipative gauge theory.
arXiv Detail & Related papers (2023-10-26T17:35:16Z) - Rigorous analysis of the topologically protected edge states in the
quantum spin Hall phase of the armchair ribbon geometry [1.2999413717930817]
We present a novel analytical approach for obtaining explicit expressions for the edge states in the Kane-Mele model.
We determine various analytical properties of the edge states, including their wave functions and energy dispersion.
Our findings shed light on the unique characteristics of the edge states in the quantum spin Hall phase of the Kane-Mele model.
arXiv Detail & Related papers (2023-06-06T14:00:25Z) - Real-space detection and manipulation of topological edge modes with
ultracold atoms [56.34005280792013]
We demonstrate an experimental protocol for realizing chiral edge modes in optical lattices.
We show how to efficiently prepare particles in these edge modes in three distinct Floquet topological regimes.
We study how edge modes emerge at the interface and how the group velocity of the particles is modified as the sharpness of the potential step is varied.
arXiv Detail & Related papers (2023-04-04T17:36:30Z) - Observation of a topological edge state stabilized by dissipation [0.0]
We study the dissipation-induced emergence of a topological band structure in a non-Hermitian one-dimensional lattice system.
We obtain direct evidence for a topological edge state that resides in the center of the band gap.
arXiv Detail & Related papers (2023-03-13T17:59:55Z) - Softening of Majorana edge states by long-range couplings [77.34726150561087]
Long-range couplings in the Kitaev chain is shown to modify the universal scaling of topological states close to the critical point.
We prove that the Majorana states become increasingly delocalised at a universal rate which is only determined by the interaction range.
arXiv Detail & Related papers (2023-01-29T19:00:08Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Delocalization of topological edge states [0.0]
The non-Hermitian skin effect (NHSE) in non-Hermitian lattice systems depicts the exponential localization of eigenstates at system's boundaries.
This work aims to investigate how the NHSE localization and topological localization of in-gap edge states compete with each other.
arXiv Detail & Related papers (2021-03-08T09:13:48Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Self-consistent theory of mobility edges in quasiperiodic chains [62.997667081978825]
We introduce a self-consistent theory of mobility edges in nearest-neighbour tight-binding chains with quasiperiodic potentials.
mobility edges are generic in quasiperiodic systems which lack the energy-independent self-duality of the commonly studied Aubry-Andr'e-Harper model.
arXiv Detail & Related papers (2020-12-02T19:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.