Observation of a topological edge state stabilized by dissipation
- URL: http://arxiv.org/abs/2303.07346v2
- Date: Thu, 12 Oct 2023 21:38:40 GMT
- Title: Observation of a topological edge state stabilized by dissipation
- Authors: Helene Wetter, Michael Fleischhauer, Stefan Linden, Julian Schmitt
- Abstract summary: We study the dissipation-induced emergence of a topological band structure in a non-Hermitian one-dimensional lattice system.
We obtain direct evidence for a topological edge state that resides in the center of the band gap.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robust states emerging at the boundary of a system constitute a hallmark for
topological band structures. Other than in closed systems, topologically
protected states can occur even in systems with a trivial band structure, if
exposed to suitably modulated losses. Here, we study the dissipation-induced
emergence of a topological band structure in a non-Hermitian one-dimensional
lattice system, realized by arrays of plasmonic waveguides with tailored loss.
We obtain direct evidence for a topological edge state that resides in the
center of the band gap. By tuning dissipation and hopping, the formation and
breakdown of an interface state between topologically distinct regions is
demonstrated.
Related papers
- Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Steady-state topological order [4.990879531940761]
We investigate a generalization of topological order from closed systems to open systems, for which the steady states take the place of ground states.
We construct typical lattice models with steady-state topological order, and characterize them by complementary approaches based on topological degeneracy of steady states, topological entropy, and dissipative gauge theory.
arXiv Detail & Related papers (2023-10-26T17:35:16Z) - Anomalous relocation of topological states [0.0]
I show that a single embedded non-Hermitian defect in a one-dimensional topological system at certain degrees of non-Hermiticity can remove the topological mode from the edge and restore it inside the lattice at the same place where the non-Hermitian defect is placed.
arXiv Detail & Related papers (2022-07-25T13:33:03Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - Topological transitions and Anderson localization of light in disordered
atomic arrays [0.0]
We study the interplay of disorder and topological phenomena in honeycomb lattices of atoms coupled by the electromagnetic field.
On the one hand, disorder can trigger insulator transitions between distinct topological phases and drive the lattice into the topological Anderson state.
We find that disorder can both open a topological pseudogap in the spectrum of an otherwise topologically trivial system and introduce spatially localized modes inside it.
arXiv Detail & Related papers (2021-12-29T17:44:02Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Topological Optical Parametric Oscillation [0.0]
Topological insulators possess protected boundary states which are robust against disorders.
This work sheds light on the dynamics of weakly nonlinear topological systems driven out of equilibrium.
arXiv Detail & Related papers (2021-08-03T04:17:51Z) - Delocalization of topological edge states [0.0]
The non-Hermitian skin effect (NHSE) in non-Hermitian lattice systems depicts the exponential localization of eigenstates at system's boundaries.
This work aims to investigate how the NHSE localization and topological localization of in-gap edge states compete with each other.
arXiv Detail & Related papers (2021-03-08T09:13:48Z) - Self-consistent theory of mobility edges in quasiperiodic chains [62.997667081978825]
We introduce a self-consistent theory of mobility edges in nearest-neighbour tight-binding chains with quasiperiodic potentials.
mobility edges are generic in quasiperiodic systems which lack the energy-independent self-duality of the commonly studied Aubry-Andr'e-Harper model.
arXiv Detail & Related papers (2020-12-02T19:00:09Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.