論文の概要: Leveraging Large Language Models to Generate Course-specific Semantically Annotated Learning Objects
- arxiv url: http://arxiv.org/abs/2412.04185v1
- Date: Thu, 05 Dec 2024 14:24:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:41:05.086968
- Title: Leveraging Large Language Models to Generate Course-specific Semantically Annotated Learning Objects
- Title(参考訳): 大規模言語モデルの活用による授業固有の意味的注釈付き学習オブジェクトの生成
- Authors: Dominic Lohr, Marc Berges, Abhishek Chugh, Michael Kohlhase, Dennis Müller,
- Abstract要約: 生成自然言語モデルの最近の進歩は、教育コンテンツの生成に新たな可能性をもたらしている。
本稿では,自動学習者モデル更新に十分な注釈を付けたコンピュータサイエンス質問を生成するための,大規模言語モデルの可能性について検討する。
- 参考スコア(独自算出の注目度): 2.1845291030915974
- License:
- Abstract: Background: Over the past few decades, the process and methodology of automated question generation (AQG) have undergone significant transformations. Recent progress in generative natural language models has opened up new potential in the generation of educational content. Objectives: This paper explores the potential of large language models (LLMs) for generating computer science questions that are sufficiently annotated for automatic learner model updates, are fully situated in the context of a particular course, and address the cognitive dimension understand. Methods: Unlike previous attempts that might use basic methods like ChatGPT, our approach involves more targeted strategies such as retrieval-augmented generation (RAG) to produce contextually relevant and pedagogically meaningful learning objects. Results and Conclusions: Our results show that generating structural, semantic annotations works well. However, this success was not reflected in the case of relational annotations. The quality of the generated questions often did not meet educational standards, highlighting that although LLMs can contribute to the pool of learning materials, their current level of performance requires significant human intervention to refine and validate the generated content.
- Abstract(参考訳): 背景: 過去数十年間、自動質問生成(AQG)のプロセスと方法論は、大きな変化を遂げてきました。
生成自然言語モデルの最近の進歩は、教育コンテンツの生成に新たな可能性をもたらしている。
目的:本稿は,自動学習者モデルの更新に十分な注釈を付け,特定のコースの文脈に完全に配置されたコンピュータサイエンス質問を生成するための大規模言語モデル(LLM)の可能性について検討し,認知的次元の理解に対処する。
方法:ChatGPTのような基本的な手法を用いた従来の試みとは異なり、我々の手法は、文脈的に関連性があり、教育的に意味のある学習オブジェクトを生成するために、検索強化生成(RAG)のようなより標的となる戦略を必要とする。
結果と結論: 私たちの結果は、構造的セマンティックアノテーションの生成がうまく機能することを示している。
しかし、この成功は関係アノテーションの場合には反映されなかった。
生成した質問の質はしばしば教育基準を満たしておらず、LLMは学習教材のプールに貢献できるが、そのパフォーマンスの現在のレベルは、生成されたコンテンツを洗練し、検証するために大きな人間の介入を必要とすることを強調した。
関連論文リスト
- Learning Task Representations from In-Context Learning [73.72066284711462]
大規模言語モデル(LLM)は、文脈内学習において顕著な習熟性を示している。
ICLプロンプトにおけるタスク情報をアテンションヘッドの関数として符号化するための自動定式化を導入する。
提案手法の有効性は,最後の隠れ状態の分布と最適に実行されたテキスト内学習モデルとの整合性に起因していることを示す。
論文 参考訳(メタデータ) (2025-02-08T00:16:44Z) - Evolving Knowledge Distillation with Large Language Models and Active
Learning [46.85430680828938]
大規模言語モデル(LLM)は、様々なNLPタスクにまたがる顕著な機能を示している。
従来の研究は、注釈付きデータを生成してLPMの知識をより小さなモデルに抽出しようと試みてきた。
EvoKD: Evolving Knowledge Distillationを提案する。これは、アクティブラーニングの概念を利用して、大規模言語モデルを用いたデータ生成のプロセスをインタラクティブに強化する。
論文 参考訳(メタデータ) (2024-03-11T03:55:24Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
大規模言語モデルにおけるコンテキスト内学習を実現するためのフレームワークを提案する。
メタモデルは、カスタマイズされたデモからなる自己教師型プロンプトで学ぶことができる。
実験の結果、SINCは様々な視覚言語タスクにおいて勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-15T08:33:08Z) - Prototyping the use of Large Language Models (LLMs) for adult learning
content creation at scale [0.6628807224384127]
本稿では,Large Language Models (LLM) の非同期コース生成における利用について検討する。
LLMを利用したコースプロトタイプを開発し,ロバストなHuman-in-the-loopプロセスを実装した。
最初の発見は、このアプローチを採用することで、正確さや明快さを損なうことなく、コンテンツ作成を高速化できることを示している。
論文 参考訳(メタデータ) (2023-06-02T10:58:05Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
検索と生成を反復的に同期させるIter-RetGenと呼ばれる手法により,高い性能が得られることを示す。
モデル出力は、タスクを完了するために必要なものを示し、より関連する知識を取得するための情報的コンテキストを提供する。
Iter-RetGenプロセスは、すべての知識を全体として取得し、構造的な制約なしに生成時の柔軟性をほとんど保持します。
論文 参考訳(メタデータ) (2023-05-24T16:17:36Z) - Exploring In-Context Learning Capabilities of Foundation Models for
Generating Knowledge Graphs from Text [3.114960935006655]
本論文は,知識グラフの自動構築と完成の技術をテキストから改善することを目的としている。
この文脈では、新しいパラダイムの1つは、言語モデルがプロンプトとともにそのまま使われる、コンテキスト内学習である。
論文 参考訳(メタデータ) (2023-05-15T17:10:19Z) - A Survey of Large Language Models [81.06947636926638]
言語モデリングは、過去20年間、言語理解と生成のために広く研究されてきた。
近年,大規模コーパス上でのトランスフォーマーモデルの事前学習により,事前学習言語モデル (PLM) が提案されている。
パラメータスケールの違いを識別するために、研究コミュニティは大規模言語モデル (LLM) という用語を提唱した。
論文 参考訳(メタデータ) (2023-03-31T17:28:46Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - Survey on Automated Short Answer Grading with Deep Learning: from Word
Embeddings to Transformers [5.968260239320591]
教育課題を学生数の増加に拡大する手段として,ASAG (Automated Short answer grading) が教育において注目を集めている。
自然言語処理と機械学習の最近の進歩はASAGの分野に大きな影響を与えた。
論文 参考訳(メタデータ) (2022-03-11T13:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。