論文の概要: Hipandas: Hyperspectral Image Joint Denoising and Super-Resolution by Image Fusion with the Panchromatic Image
- arxiv url: http://arxiv.org/abs/2412.04201v1
- Date: Thu, 05 Dec 2024 14:39:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:39:43.961947
- Title: Hipandas: Hyperspectral Image Joint Denoising and Super-Resolution by Image Fusion with the Panchromatic Image
- Title(参考訳): ヒパダ: ハイパースペクトル画像の結合分解とパンクロマティック画像との融合による超解像
- Authors: Shuang Xu, Zixiang Zhao, Haowen Bai, Chang Yu, Jiangjun Peng, Xiangyong Cao, Deyu Meng,
- Abstract要約: 最近打ち上げられた衛星は、HSIとパンクロマティック(PAN)画像の同時取得が可能になった。
Hipandasは、ノイズの多い低分解能HSIと高分解能PAN画像からHRHS画像を再構成する新しい学習パラダイムである。
- 参考スコア(独自算出の注目度): 51.333064033152304
- License:
- Abstract: Hyperspectral images (HSIs) are frequently noisy and of low resolution due to the constraints of imaging devices. Recently launched satellites can concurrently acquire HSIs and panchromatic (PAN) images, enabling the restoration of HSIs to generate clean and high-resolution imagery through fusing PAN images for denoising and super-resolution. However, previous studies treated these two tasks as independent processes, resulting in accumulated errors. This paper introduces \textbf{H}yperspectral \textbf{I}mage Joint \textbf{Pand}enoising \textbf{a}nd Pan\textbf{s}harpening (Hipandas), a novel learning paradigm that reconstructs HRHS images from noisy low-resolution HSIs (LRHS) and high-resolution PAN images. The proposed zero-shot Hipandas framework consists of a guided denoising network, a guided super-resolution network, and a PAN reconstruction network, utilizing an HSI low-rank prior and a newly introduced detail-oriented low-rank prior. The interconnection of these networks complicates the training process, necessitating a two-stage training strategy to ensure effective training. Experimental results on both simulated and real-world datasets indicate that the proposed method surpasses state-of-the-art algorithms, yielding more accurate and visually pleasing HRHS images.
- Abstract(参考訳): ハイパースペクトル画像(HSI)は、画像装置の制約により、しばしばノイズが多く、低解像度である。
最近打ち上げられた衛星は、HSIとパンクロマティック(PAN)画像の同時取得が可能となり、高分解能・高分解能画像の復元が可能となった。
しかし、以前の研究ではこれらの2つのタスクを独立したプロセスとして扱い、結果としてエラーが蓄積された。
本稿では、低分解能HSI(LRHS)と高分解能PAN画像からHRHS画像を再構成する新しい学習パラダイムである、textbf{H}yperspectral \textbf{I}mage Joint \textbf{Pand}enoising \textbf{a}nd Pan\textbf{s}harpening (Hipandas)を紹介する。
提案するゼロショットハイパンダフレームワークは,HSIの低ランク前と,新たに導入されたディテール指向の低ランク前とを利用して,ガイド付きデノナイジングネットワーク,ガイド付きスーパーレゾリューションネットワーク,PAN再構成ネットワークで構成されている。
これらのネットワークの相互接続はトレーニングプロセスを複雑にし、効果的なトレーニングを保証するために2段階のトレーニング戦略を必要とする。
シミュレーションと実世界の両方のデータセットの実験結果から,提案手法は最先端のアルゴリズムを超越し,より正確かつ視覚的にHRHS画像が得られることが示された。
関連論文リスト
- HIR-Diff: Unsupervised Hyperspectral Image Restoration Via Improved
Diffusion Models [38.74983301496911]
ハイパースペクトル画像(HSI)の復元は、劣化した観察からクリーンなイメージを復元することを目的としている。
既存のモデルに基づく手法は、複雑な画像の特徴を正確にモデル化するのに限界がある。
本稿では,事前学習拡散モデル(HIR-Diff)を用いた教師なしHSI復元フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-24T17:15:05Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
HSI再構成のための高分解能デュアルドメイン学習ネットワーク(HDNet)を提案する。
一方、高効率な特徴融合によるHR空間スペクトルアテンションモジュールは、連続的かつ微細な画素レベルの特徴を提供する。
一方、HSI再構成のために周波数領域学習(FDL)を導入し、周波数領域の差を狭める。
論文 参考訳(メタデータ) (2022-03-04T06:37:45Z) - LDP-Net: An Unsupervised Pansharpening Network Based on Learnable
Degradation Processes [18.139096037746672]
LDP-Netと呼ばれる学習可能な劣化過程に基づく新しい教師なしネットワークを提案する。
ブルーリングブロックとグレーニングブロックは、それぞれ対応する劣化過程を学習するように設計されている。
Worldview2 および Worldview3 画像を用いた実験により,提案した LDP-Net は,HRMS サンプルを使わずに PAN と LRMS 画像を効果的に融合できることを示した。
論文 参考訳(メタデータ) (2021-11-24T13:21:22Z) - Unsupervised Cycle-consistent Generative Adversarial Networks for
Pan-sharpening [41.68141846006704]
本稿では,この問題を緩和するために,基礎的な真理を伴わずに,フルスケールの画像から学習する,教師なしの生成的敵対的枠組みを提案する。
PANおよびMS画像から2ストリーム生成器を用いてモダリティ特異的特徴を抽出し,特徴領域での融合を行い,パンシャープ画像の再構成を行う。
提案手法は,フルスケール画像のパンシャーピング性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2021-09-20T09:43:24Z) - Hyperspectral Pansharpening Based on Improved Deep Image Prior and
Residual Reconstruction [64.10636296274168]
高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能化
近年,深層畳み込みネットワーク(ConvNets)を用いたHSパンシャープ法が注目に値する結果を得た。
深層層の増加を抑えることで高レベルの特徴を学習することに焦点を当てた,新しいオーバーコンプリートネットワークHyperKiteを提案する。
論文 参考訳(メタデータ) (2021-07-06T14:11:03Z) - PGMAN: An Unsupervised Generative Multi-adversarial Network for
Pan-sharpening [46.84573725116611]
プリプロセッシングのないフル解像度画像から直接学習する教師なしのフレームワークを提案する。
本研究では,2ストリーム生成器を用いてPAN画像とMS画像からモダリティ固有の特徴を抽出し,融合時に入力のスペクトル情報と空間情報を保存する2重識別器を開発した。
論文 参考訳(メタデータ) (2020-12-16T16:21:03Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
空間情報とスペクトル情報の相互モダリティ分布が問題となる。
本稿では,PZRes-Netという,新しいテクスライトウェイトなディープニューラルネットワークベースのフレームワークを提案する。
本フレームワークは,高分解能かつテクテッセロ中心の残像を学習し,シーンの空間的詳細を高頻度で表現する。
論文 参考訳(メタデータ) (2020-06-18T06:32:11Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
本稿では,一対の相補的な旅先を含むLRD画像モデルを提案する。
次に、画像CSのためのRDモデルに基づく新しいハイブリッド・プラグイン・アンド・プレイ・フレームワークを提案する。
そこで,提案したH-based image CS問題の解法として,単純で効果的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-16T08:17:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。