Relationships between Keywords and Strong Beats in Lyrical Music
- URL: http://arxiv.org/abs/2412.04202v1
- Date: Thu, 05 Dec 2024 14:40:27 GMT
- Title: Relationships between Keywords and Strong Beats in Lyrical Music
- Authors: Callie C. Liao, Duoduo Liao, Ellie L. Zhang,
- Abstract summary: This study investigates the relationships between keywords and rhythmically stressed features such as strong beats in songs.
On average, 80.8% of keywords land on strong beats, whereas 62% of non-keywords fall on weak beats.
We conclude that keywords that consistently align with strong beats are more reliable indicators of lyrics-rhythm associations.
- Score: 0.0
- License:
- Abstract: Artificial Intelligence (AI) song generation has emerged as a popular topic, yet the focus on exploring the latent correlations between specific lyrical and rhythmic features remains limited. In contrast, this pilot study particularly investigates the relationships between keywords and rhythmically stressed features such as strong beats in songs. It focuses on several key elements: keywords or non-keywords, stressed or unstressed syllables, and strong or weak beats, with the aim of uncovering insightful correlations. Experimental results indicate that, on average, 80.8\% of keywords land on strong beats, whereas 62\% of non-keywords fall on weak beats. The relationship between stressed syllables and strong or weak beats is weak, revealing that keywords have the strongest relationships with strong beats. Additionally, the lyrics-rhythm matching score, a key matching metric measuring keywords on strong beats and non-keywords on weak beats across various time signatures, is 0.765, while the matching score for syllable types is 0.495. This study demonstrates that word types strongly align with their corresponding beat types, as evidenced by the distinct patterns, whereas syllable types exhibit a much weaker alignment. This disparity underscores the greater reliability of word types in capturing rhythmic structures in music, highlighting their crucial role in effective rhythmic matching and analysis. We also conclude that keywords that consistently align with strong beats are more reliable indicators of lyrics-rhythm associations, providing valuable insights for AI-driven song generation through enhanced structural analysis. Furthermore, our development of tailored Lyrics-Rhythm Matching (LRM) metrics maximizes lyrical alignments with corresponding beat stresses, and our novel LRM file format captures critical lyrical and rhythmic information without needing original sheet music.
Related papers
- Automatic Time Signature Determination for New Scores Using Lyrics for
Latent Rhythmic Structure [0.0]
We propose a novel approach that only uses lyrics as input to automatically generate a fitting time signature for lyrical songs.
In this paper, the best of our experimental results reveal a 97.6% F1 score and a 0.996 Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) score.
arXiv Detail & Related papers (2023-11-27T01:44:02Z) - Unsupervised Melody-to-Lyric Generation [91.29447272400826]
We propose a method for generating high-quality lyrics without training on any aligned melody-lyric data.
We leverage the segmentation and rhythm alignment between melody and lyrics to compile the given melody into decoding constraints.
Our model can generate high-quality lyrics that are more on-topic, singable, intelligible, and coherent than strong baselines.
arXiv Detail & Related papers (2023-05-30T17:20:25Z) - Unsupervised Melody-Guided Lyrics Generation [84.22469652275714]
We propose to generate pleasantly listenable lyrics without training on melody-lyric aligned data.
We leverage the crucial alignments between melody and lyrics and compile the given melody into constraints to guide the generation process.
arXiv Detail & Related papers (2023-05-12T20:57:20Z) - Multimodal Lyrics-Rhythm Matching [0.0]
We propose a novel multimodal lyrics-rhythm matching approach that specifically matches key components of lyrics and music with each other.
We use audio instead of sheet music with readily available metadata, which creates more challenges yet increases the application flexibility of our method.
Our experimental results reveal an 0.81 probability of matching on average, and around 30% of the songs have a probability of 0.9 or higher of keywords landing on strong beats.
arXiv Detail & Related papers (2023-01-06T22:24:53Z) - Keywords and Instances: A Hierarchical Contrastive Learning Framework
Unifying Hybrid Granularities for Text Generation [59.01297461453444]
We propose a hierarchical contrastive learning mechanism, which can unify hybrid granularities semantic meaning in the input text.
Experiments demonstrate that our model outperforms competitive baselines on paraphrasing, dialogue generation, and storytelling tasks.
arXiv Detail & Related papers (2022-05-26T13:26:03Z) - Word Embeddings Are Capable of Capturing Rhythmic Similarity of Words [0.0]
Word embedding systems such as Word2Vec and GloVe are well-known in deep learning approaches to NLP.
In this work we investigated their usefulness in capturing rhythmic similarity of words instead.
The results show that vectors these embeddings assign to rhyming words are more similar to each other, compared to the other words.
arXiv Detail & Related papers (2022-04-11T02:33:23Z) - Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship
Attribution [74.27826764855911]
We employ syllabic quantity as a base for deriving rhythmic features for the task of computational authorship attribution of Latin prose texts.
Our experiments, carried out on three different datasets, using two different machine learning methods, show that rhythmic features based on syllabic quantity are beneficial in discriminating among Latin prose authors.
arXiv Detail & Related papers (2021-10-27T06:25:31Z) - Synchronising speech segments with musical beats in Mandarin and English
singing [4.627414193046309]
The presence of musical beats was more dependent on segment duration than sonority.
Mandarin and English demonstrated cross-linguistic variations despite exhibiting common patterns.
arXiv Detail & Related papers (2021-06-18T10:32:27Z) - Match-Ignition: Plugging PageRank into Transformer for Long-form Text
Matching [66.71886789848472]
We propose a novel hierarchical noise filtering model, namely Match-Ignition, to tackle the effectiveness and efficiency problem.
The basic idea is to plug the well-known PageRank algorithm into the Transformer, to identify and filter both sentence and word level noisy information.
Noisy sentences are usually easy to detect because the sentence is the basic unit of a long-form text, so we directly use PageRank to filter such information.
arXiv Detail & Related papers (2021-01-16T10:34:03Z) - SongMASS: Automatic Song Writing with Pre-training and Alignment
Constraint [54.012194728496155]
SongMASS is proposed to overcome the challenges of lyric-to-melody generation and melody-to-lyric generation.
It leverages masked sequence to sequence (MASS) pre-training and attention based alignment modeling.
We show that SongMASS generates lyric and melody with significantly better quality than the baseline method.
arXiv Detail & Related papers (2020-12-09T16:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.